MATLAB
1、灰度化
2、二值化
3、取反
4、连通域标记
连通域标记
5、对每个连通域,计算x坐标和,y坐标和,分别除以面积则为质心坐标
clear;clc;close all;
I=imread('1.png');%读取原图像
figure(1);imshow(I);%显示原图像
I_gray=rgb2gray(I);%原图像变为灰度图像
level=graythresh(I_gray);%计算图像I_gray的全局阈值,level为标准化灰度值,其范围为[0 1]
[height,width]=size(I_gray);%计算灰度图像的长宽
I_bw=im2bw(I_gray,level);%im2bw使用阈值level将灰度图像转换为二值图像.
figure(2);imshow(I_bw);%显示二值图像(背景为白色)
for i=1:height %%循环中进行反色
for j=1:width
if I_bw(i,j)==1
I_bw(i,j)=0;
else I_bw(i,j)=1;
end
end
end
figure(3);imshow(I_bw);%显示取反后的二值图像(背景为黑色)
[L,num]=bwlabel(I_bw,8);%bwlabel标注二值图像I_bw中的目标物体,返回标识矩阵L和I_bw中目标物体的数量num,8表示连通数.
plot_x=zeros(1,num);%%zeros(m,n)产生m×n的全0矩阵.用于记录质心位置的横坐标
plot_y=zeros(1,num);%zeros(m,n)产生m×n的全0矩阵.用于记录质心位置的纵坐标
for k=1:num %%num个区域依次统计质心位置
sum_x=0; sum_y=0; area=0; %初始化
for i=1:height
for j=1:width
if L(i,j)==k
sum_x=sum_x+i; %计算第K区域的横坐标总和
sum_y=sum_y+j; %计算第K区域的纵坐标总和
area=area+1; %计算第K区域的由多少个坐标点表示
end
end
end
plot_x(k)=fix(sum_x/area); %计算第K区域的质心横坐标
plot_y(k)=fix(sum_y/area);%计算第K区域的质心纵坐标
end
figure(4);imshow(I_bw);%显示取反后的二值图像(背景为黑色),并在图上标注质心点位置
for i=1:num
hold on
plot(plot_y(i) ,plot_x(i), '*')
end
C++
1、灰度化
2、高斯滤波
3、canny算子边缘检测
4、寻找轮廓
5、寻找轮廓的矩,计算质心
5、画出轮廓,画出外接矩形以及质心
#include
#include
#include
#include
using namespace cv;
using namespace std;
Mat src;
Mat src_gray;
int thresh = 30;
int max_thresh = 255;
int main()
{
src = imread("E:\\Exercise\\VS\\project\\运动检测\\混合高斯模型\\1.png", CV_LOAD_IMAGE_COLOR); //注意路径得换成自己的
cvtColor(src, src_gray, CV_BGR2GRAY);//灰度化
GaussianBlur(src, src, Size(3, 3), 0.1, 0, BORDER_DEFAULT);
blur(src_gray, src_gray, Size(3, 3)); //滤波
namedWindow("image", CV_WINDOW_AUTOSIZE);
imshow("image", src);
moveWindow("image", 20, 20);
//定义Canny边缘检测图像
Mat canny_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
//利用canny算法检测边缘
Canny(src_gray, canny_output, thresh, thresh * 3, 3);
namedWindow("canny", CV_WINDOW_AUTOSIZE);
imshow("canny", canny_output);
moveWindow("canny", 550, 20);
//查找轮廓
findContours(canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
//计算轮廓矩
vector<Moments> mu(contours.size());
for (int i = 0; i < contours.size(); i++)
{
mu[i] = moments(contours[i], false);
}
//计算轮廓的质心
vector<Point2f> mc(contours.size());
for (int i = 0; i < contours.size(); i++)
{
mc[i] = Point2d(mu[i].m10 / mu[i].m00, mu[i].m01 / mu[i].m00);
}
//画轮廓及其质心并显示
Mat drawing = Mat::zeros(canny_output.size(), CV_8UC3);
for (int i = 0; i < contours.size(); i++)
{
Scalar color = Scalar(255, 0, 0);
drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());
circle(drawing, mc[i], 5, Scalar(0, 0, 255), -1, 8, 0);
rectangle(drawing, boundingRect(contours.at(i)), cvScalar(0, 255, 0));
char tam[100];
//printf(tam, "(%0.0f,%0.0f)", mc[i].x, mc[i].y);
putText(drawing, tam, Point(mc[i].x, mc[i].y), FONT_HERSHEY_SIMPLEX, 0.4, cvScalar(255, 0, 255), 1);
}
namedWindow("Contours", CV_WINDOW_AUTOSIZE);
imshow("Contours", drawing);
moveWindow("Contours", 1100, 20);
waitKey(0);
src.release();
src_gray.release();
return 0;
}
#coding=utf-8
import cv2
import numpy as np
img = cv2.imread('./image/multiple.png')
# convert the image to grayscale
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# convert the grayscale image to binary image
ret,thresh = cv2.threshold(gray_image,127,255,0)
# find contour in the binary image
contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# find contour in the binary image(opencv4)
#binary, contours, opt = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
# calculate moments for each contour
M = cv2.moments(c)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# calculate x,y coordinate of center
cv2.circle(img, (cX, cY), 5, (255, 255, 255), -1)
cv2.putText(img, "centroid", (cX - 25, cY - 25),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# 3.4.1 im2, contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
# 3.2.0 im2, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# display the image
cv2.imshow("Image", img)
cv2.waitKey(0)