- 多模态大模型:技术原理与实战 ChatGPT的诞生
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战ChatGPT的诞生作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习在NLP中的应用1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2预训练语言模型的发展1.3.3GPT系
- 统计机器学习第十三章极大似然估计的性质——图解MLE的渐进正态性
cui_hao_nan
统计机器学习导论机器学习
n=10;t=10000;s=1/12/n;x=linspace(-0.4,0.4,100);y=1/sqrt(2*pi*s)*exp(-x.^2/(2*s));z=mean(rand(t,n)-0.5,2);figure(1);clf;holdonb=20;hist(z,b);h=plot(x,y*t/b*(max(z)-min(z)),'r-');这段代码的功能是生成随机数并进行直方图和曲线的
- 赠书 | 李航老师的蓝皮书
茗创科技
赠书活动统计学习方法“统计机器学习方法是实现智能化目标的最有效的手段,统计机器学习是各种智能性处理研究领域中的核心技术,并且在这些领域的发展及应用中起着决定性的作用。”作者简介李航,日本京都大学电气电子工程系毕业,日本东京大学计算机科学博士。北京大学、南京大学客座教授,IEEE会士,ACM杰出科学家,CCF高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。曾出版过三部学术专著
- 统计机器学习-感知机
又双叒叕苟了一天
感知机是二分类的线性分类模型,即通过一个超平面将数据集分割在两侧,同在一个侧的为同一个分类,一般上侧的为正例,下侧的为负例。感知机的定义假设输入空间(特征空间)是,输出空间是。输入表示实例的特征向量,对应于输入空间(特征空间)的点;输出表示实例的类别。由输入空间到输出空间的如下函数称为感知机。其中,和为感知机模型参数,叫做权值或权值向量,叫做偏置,表示和的内积。是符号函数,即并且假设数据是完全线性
- 二、自然语言处理发展历程
智享AI
深度学习自然语言处理
1.自然语言处理发展历程自然语言处理的发展历程经历了兴起阶段、符号主义、连接主义和深度学习阶段。兴起阶段:自然语言处理的萌芽期,代表人物包括图灵和香农。符号主义:自然语言处理的发展器,代表任务是乔姆斯基和他的生成文法。连接主义:自然语言处理的发展器,代表方法为统计机器学习。深度学习:自然语言处理的鼎盛期,代表人物为深度学习三巨头:YoshuaBengio、YannLeCun、GeoffreyHin
- 机器学习和深度学习检测网络安全课题:DDOS检测、恶意软件、恶意流量检测课题资料
三更科技公社
机器学习深度学习web安全
开源的DDOS检测工具https://github.com/equalitie/learn2ban基于KDDCUP99数据集预测DDoS攻击基于谱分析与统计机器学习的DDoS攻击检测技术研究基于机器学习的分布式拒绝服务攻击检测方法研究DDoSAttacksUsingHiddenMarkovModelsandCooperativeReinforcementLearning*恶意软件检测https:/
- 神经网络:深度学习优化方法
是Dream呀
神经网络深度学习神经网络人工智能
1.有哪些方法能提升CNN模型的泛化能力采集更多数据:数据决定算法的上限。优化数据分布:数据类别均衡。选用合适的目标函数。设计合适的网络结构。数据增强。权值正则化。使用合适的优化器等。2.BN层面试高频问题大汇总BN层解决了什么问题?统计机器学习中的一个经典假设是“源空间(sourcedomain)和目标空间(targetdomain)的数据分布(distribution)是一致的”。如果不一致,
- 【期末复习向】文本理解与数据挖掘-名词解释
诺坎普的风间
数据挖掘人工智能文本理解深度学习名词解释
(一)什么是自然语言处理1.自然语言处理(NLP)从最广泛的意义上说,NLP指的是任何自动处理人类语言的程序(二)一系列自然语言处理问题2.NLP常用方法基于规则的方法(基于人工标注的规则和字典,覆盖度低)统计机器学习方法(被学术界和工业界采用;使用概率模型,包括训练数据、特征工程、在参数上训练模型、将模型应用与测试数据)联结主义方法(深度学习崛起,包括没有语言特征、采用大量原始数据训练、参数量大
- zxl-机器学习-01
米米吉吉
Python机器学习
文章目录机器学习一.定义:二.计算机三阶段三.基本要求四.统计机器学习五.基本问题六.机器学习的方法作者:zstarling机器学习网络算法机器优化概率统计数据矩阵信息模型推理知识靠学习一.定义:机器学习是把数据变成知识的和过程。计算机和数学的结合。统计提供建模的框架framework。数据挖掘和机器学习本质上无区别,机器学习更偏数学。区别:ML机器学习STAT统计学networks,graphs
- 多重共线性
7ccc099f4608
最近碰到个有有意思的问题:在传统统计机器学习(lr)中,相关性检测(VIF等)防止多重共线性非常重要;但是在实际的机器学习应用中,多重共线性似乎不用考虑。参考这个回答:https://stats.stackexchange.com/questions/168622/why-is-multicollinearity-not-checked-in-modern-statistics-machine-l
- 参数估计
Xwei1226
paperreading参数估计
大学期间学习数理统计这门课程的时候,没有特别用心。说实话统计学还是挺枯燥的,而且当时也没有太多的学习意识,不知道为什么要学这些貌似八竿子打不着的东西。现在想想,当时真是toosimple,sometimesnaive啊。。等到越往后面深入,发现需要用的数学知识尤其是统计学知识越来越多,因为现在机器学习里发展最成熟应用最广泛的一部分就是统计机器学习,自然离不开统计学的方方面面。而且随着研究的逐步深入
- 图神经网络--论文精读
无盐薯片
图神经网络神经网络机器学习人工智能
论文精读图神经网络论文精读摘要介绍问题定义学习表示算法代码实战加载百科词条,构建无向图训练Word2Vec模型摘要DeepWalk用于学习隐式表征的表示学习方法,将节点在图中的连接关系进行编码,形成稠密低维连续的向量空间,可用于统计机器学习在多类别网络分类任务上表现不错,例如BlogCatalog、Flickr和YouTubeDeepWalk基于随机游走的,适用于稀疏标注的场景介绍背景:传统机器学
- 贝叶斯变分方法:初学者指南--平均场近似
无水先生
#贝叶斯理论人工智能人工智能数学模型
EricJang:ABeginner'sGuidetoVariationalMethods:Mean-FieldApproximation(evjang.com)一、说明变分贝叶斯(VB)方法是统计机器学习中非常流行的一系列技术。VB方法允许我们将统计推断问题(即,给定另一个随机变量的值来推断随机变量的值)重写为优化问题(即,找到最小化某些目标函数的参数值),本文将阐述这种精妙模型。二、文章绪论2
- 机器学习实战 梯度上升 数学推导_机器学习-白板推导系列(二)-数学基础笔记
weixin_39644377
机器学习实战梯度上升数学推导
视频如下:机器学习-白板推导系列(二)-数学基础_哔哩哔哩(゜-゜)つロ干杯~-bilibiliwww.bilibili.com一、概率-高斯分布1-极大似然估计高斯分布在统计机器学习中占据重要的地位。本节内容主要是利用极大似然估计计算高斯分布下的最优参数。Data:假设数据中有个样本,每个样本为维数据(含有个feature)所有的样本都独立同分布于高斯分布MLE:极大似然估计MLE:求最优的使得
- 2018年8月9日
真昼之月
早上提前于闹钟醒来,希望以后也能一直这样。坐地铁时再度挤成狗,早出门和地铁人不多果然是无法兼得的吗……再次久违(?)地来到公司并打扫工位,学长继续出差中,但是休产假的另一个同事倒是回来了……上午闲着没事看了看李航的统计机器学习,超困,中午睡了半个小时午觉后好了点。下午又看了一会儿书之后开始自己找正事干,写评分卡模型的操作说明写到一半。晚上大部分时间都在KFC摸鱼打鬼岛,面对Rider红鬼掏出了好久
- 浅谈从机器学习到深度学习
江小北
机器学习机器学习
机器学习分为频率派和贝叶斯派。频率派发展成统计机器学习,贝叶斯派发展成概率图模型。频率派有“四化”,如图所示,正则化有很多种,在损失函数后面加一个惩罚项,比如线性回归里面的L1和L2正则化,每个模型的正则化项不一定相同;核化用处非常多,常见的有kernelSVM,另外在降维也有用到,比如kernelPCA。集成方法现在非常多,bagging代表是随机森林,boosting代表有AdaBoost,G
- 概率论入门之《统计机器学习导论》阅读笔记(第一,二章)
生而为弟
第一章统计机器学习第一章主要介绍了机器学习的分类:监督学习,非监督学习,强化学习。然后介绍了监督学习的三大主要任务:回归,分类,排序,以及非监督学习的聚类。最后稍稍介绍了一下机器学习中的其它技术:集成学习,张量学习,在线学习,迁移学习,度量学习。当然这些与概率论关系不大,因此笔者在此略过。下面着重记录第二章的阅读笔记。第二章随机变量与概率分布2.1数学基础imageimageimageimage以
- 监督学习方法与无监督学习方法总结
daisyxyr
李航统计学习方法笔记学习机器学习算法
(一)监督学习10种监督学习方法特点的概括汇总如下表:(二)无监督学习八种常用的统计机器学习方法,即聚类方法(包括层次聚类与k均值聚类)、奇异值分解(SVD)、主成分分析(PCA)、潜在语义分析(LSA)、概率潜在语义分析(PLSA)、马尔可夫链蒙特卡罗法(MCMC)、潜在狄利克雷分配(LDA)、PageRank算法还有另外三种常用的统计机器学习方法,即非负矩阵分解(NMF)、变分推理、幂法这些方
- 【统计机器学习】考核标准 + 课堂练习题汇总
MorleyOlsen
专业选修课系列机器学习人工智能
写在前面1:上课老师是:付学谦老师及其博士助教。上课带纸笔和人就行。2:上课的内容和作业量相比于其他选修课较为轻松,且只有大作业和论文报告,没有考试!!!基本上最后会留20min给同学们写课堂练习题。3:最好拍下每张ppt,指不定哪道题就用上了。以及现在是GPT时代,善用工具会事半功倍。4:平时分而言,我个人觉得挺玄学的,每次课都做前排且上课听讲并回答问题,最后也只拿了B+。5:所以,只是为了刷成
- 《统计机器学习》学习笔记第三章之K近邻
资料加载中
机器学习统计学习方法
本文完全转载于https://www.cnblogs.com/pinard/p/6061661.html标记了一些自己认为比较重要的句子,同时自己为了以后回顾方便就搬了过来。这是一个关于统计机器学习的系列笔记。K近邻法(k-nearestneighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用。比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏
- 李航老师《统计学习方法》第1章阅读笔记
Chen_Chance
学习方法笔记人工智能
1.1统计学习统计学习的特点统计学习:计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析现在人们提及机器学习时,往往指统计机器学习,所以可以认为本书介绍的是机器学习方法统计学习的对象统计学习研究的对象是数据(data),统计学习关于数据的基本假设是同类数据具有一定的统计规律性,这是统计学习的前提。e.g.用随机变量描述数据的特征,用概率分布描述数据的统计规律在统计学习中,以变量或变量组表
- 从统计语言模型到预训练语言模型---统计语言模型
hanscalZheng
大语言模型语言模型人工智能自然语言处理
语言模型从历史上来看,自然语言处理的研究范式变化是从规则到统计,从统计机器学习到基于神经网络的深度学习,这同时也是语言模型发展的历史。要了解语言模型的发展历史,首先我们需要认识什么是语言模型。语言模型的目标是建模自然语言的概率分布,即确定语言中任意词序列的概率,它提供了从概率统计角度建模语言文字的独特视角。语言模型在自然语言处理中用广泛的应用,在语音识别、语法纠错、机器翻译、语言生成等任务中均发挥
- 统计机器学习(二)-- 概率(3、4、5、6)
雪茸川
概率1.1概率空间和事件样本空间是实验所有可能结果的空间,,是一个元素或者实现事件是样本空间的子集测度论相关巴拉巴拉随机变量离散随机变量(0-1)分布数学期望二项分布数学期望性质函数n:整数推广NegativeBinomialDistribution几何分布数学期望比如丢硬币得到一次正面所需要的次数泊松分布泊松定理注意:意味着当n很大的时候必定很小可能场景:一本书中一页的印刷错误,一天内病人的人数
- 【AI】机器学习——绪论
AmosTian
AI#机器学习人工智能机器学习AI
文章目录1.1机器学习概念1.1.1定义统计机器学习与数据挖掘区别机器学习前提1.1.2术语1.1.3特点以数据为研究对象目标方法——基于数据构建模型SML三要素SML步骤1.2分类1.2.1参数化/非参数化方法1.2.2按算法分类1.2.3按模型分类概率模型非概率模型逻辑斯蒂回归1.2.4基本分类监督学习分类符号表示形式化特征无监督模型特征符号表示形式化强化学习半监督学习主动学习1.2.5按技巧
- 统计机器学习 -- 目录
雪茸川
概率基础随机变量1随机变量2高斯分布连续分布例子scalemixturepisribarinjeffreypriorstatisticinterenceLaplace变换多元分布定义概率变换jacobianwedgeproduction统计量多元正态分布Wishart分布矩阵元Beta分布统计量充分统计量指数值分布共轭先验性质EntropyKLdistanceproperties概率不等式1概率不
- 1.统计学习及监督学习概论
徴徴南风
1.1统计学习统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科。统计学习也称为统计机器学习。统计学习的前置知识:工科数学(高等数学),线性代数,概率论,一门基础编程语言(python)统计学习的步骤:有限数据-》假设空间-》学习策略-》实现算法-》选择最优-》预测新数据1.2统计学习的分类基本分类:监督学习,无监督学习,半监督学习,强化学习监督学习:监督学习的本
- 人工智能之数学(概率方面)
aidh123
人工智能之数学概率贝叶斯
我们经常使用的统计机器学习算法,或者是神经网络模型中,数学作为最基础的根基,融合了高等数学中的微分学、概率、线性代数、凸优化等方面,每一个方面深入后都是有很多的益处,但是本着先实用,在进行学习的原则。所以主要是理解相关数学符号,理解统计学习中一些和概率相关的算法推导,即可。基础概率:一件事情发生的概率,等于该事件发生的数目除以所发生的数目。例如电影院观影人数为100人,女生50人,男士50人,你看
- 统计学习方法学习笔记(一)————统计学习方法概论
阿波拉
统计学习方法李航统计学习数据监督学习特征空间
1.统计学习(1)统计学习概念统计学习(statisticallearning)是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科。统计学习也称为统计机器学习(statisticalmachinelearning)。(2)统计学习的特点统计学习以计算机及网络为平台,是建立在计算机及网络之上的。统计学习以数据为研究对象,是数据驱动的学科。统计学习的目的是对数据进行预测与分析
- 2022-04-29 《当产品经理遇到人工智能》读书笔记07 自然语言处理的产品应用
May_1013
自然语言处理产品应用在人工智能领域,会将所有人类使用的语言视为“自然”语言。自然语言处理NaturalLanguageProcessing,NLP技术可以让机器更加懂得人类的自然语言,理解人类通过语言所表达的含义。一、认识NLP1、常见自然语言处理的两种方法1)基于规则来理解自然语言,即通过制定一系列的规则来设计一个程序,然后通过这个程序来解决自然语言交流的问题2)基于统计机器学习来理解自然语言,
- 《统计学习方法》学习笔记1:以方法为中心
王同学LM
Machinelearning学习方法学习笔记
统计学习,也称统计机器学习,什么是学习,如果一个系统能够通过执行某个过程改进它的性能,就说这个系统可以学习。按此定义,统计机器学习,就是计算机系统通过运行数据及统计方法提高系统性能的机器学习。它以计算机和网络为平台,以数据为研究对象,目的是对数据进行预测与分析。统计学习以方法为中心,方法构建模型,再应用模型去预测与分析。1.统计学习建立在计算机和网络之上自不必说。2.之所以以数据为研究对象,是因为
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep