- 吴恩达深度学习笔记(30)-正则化的解释
极客Array
正则化(Regularization)深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少你的网络误差。如果你怀疑神经网络过度拟合了数据,即存在高方差问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,这也是非常
- 吴恩达深度学习笔记(24)-为什么要使用深度神经网络?
极客Array
为什么使用深层表示?(Whydeeprepresentations?)我们都知道深度神经网络能解决好多问题,其实并不需要很大的神经网络,但是得有深度,得有比较多的隐藏层,这是为什么呢?我们一起来看几个例子来帮助理解,为什么深度神经网络会很好用。首先,深度网络在计算什么?如果你在建一个人脸识别或是人脸检测系统,深度神经网络所做的事就是,当你输入一张脸部的照片,然后你可以把深度神经网络的第一层,当成一
- 【深度学习笔记】1 数据操作
RIKI_1
深度学习深度学习笔记人工智能
注:本文为《动手学深度学习》开源内容,仅为个人学习记录,无抄袭搬运意图数据操作在深度学习中,我们通常会频繁地对数据进行操作。作为动手学深度学习的基础,本节将介绍如何对内存中的数据进行操作。在PyTorch中,torch.Tensor是存储和变换数据的主要工具。如果你之前用过NumPy,你会发现Tensor和NumPy的多维数组非常类似。然而,Tensor提供GPU计算和自动求梯度等更多功能,这些使
- 【深度学习笔记】6_4 循环神经网络的从零开始实现
RIKI_1
深度学习深度学习笔记rnn
注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图6.4循环神经网络的从零开始实现在本节中,我们将从零开始实现一个基于字符级循环神经网络的语言模型,并在周杰伦专辑歌词数据集上训练一个模型来进行歌词创作。首先,我们读取周杰伦专辑歌词数据集:importtimeimportmathimportnumpyasnpimporttorchfromtorchimport
- 【深度学习笔记】6_10 双向循环神经网络bi-rnn
RIKI_1
深度学习深度学习笔记rnn
注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图6.10双向循环神经网络之前介绍的循环神经网络模型都是假设当前时间步是由前面的较早时间步的序列决定的,因此它们都将信息通过隐藏状态从前往后传递。有时候,当前时间步也可能由后面时间步决定。例如,当我们写下一个句子时,可能会根据句子后面的词来修改句子前面的用词。双向循环神经网络通过增加从后往前传递信息的隐藏层来更
- 深度学习笔记1:神经网络端到端学习笔记
撒哈拉土狼
深度学习
许多重要问题都可以抽象为变长序列学习问题(sequencetosequencelearning),如语音识别、机器翻译、字符识别。这类问题的特点是,1)输入和输出都是序列(如连续值语音信号/特征、离散值的字符),2)序列长度都不固定,3)并且输入输出序列长度没有对应关系。因此,传统的神经网络模型(DNN,CNN,RNN)不能直接以端到端的方式解决这类问题的建模和学习问题。解决变长序列的端到端学习,
- 吴恩达深度学习-L1 神经网络和深度学习总结
向来痴_
深度学习人工智能
作业地址:吴恩达《深度学习》作业线上版-知乎(zhihu.com)写的很好的笔记:吴恩达《深度学习》笔记汇总-知乎(zhihu.com)我的「吴恩达深度学习笔记」汇总帖(附18个代码实战项目)-知乎(zhihu.com)此处只记录需要注意的点,若想看原笔记请移步。1.1深度学习入门我们只需要管理神经网络的输入和输出,而不用指定中间的特征,也不用理解它们究竟有没有实际意义。1.2简单的神经网络——逻
- 深度学习笔记:推理服务
TaoTao Li
tensorflow深度学习深度学习人工智能机器学习
在线推理服务解决的问题样本处理特征抽取(生成)特征抽取过程特征定义通用定义具体定义特征抽取加速Embeding查询NN计算DL框架计算优化图优化量化优化异构计算CodeGen总结参考资料解决的问题模型训练解决模型效果问题,模型推理解决模型实时预测问题。推理服务是把训练好的模型部署到线上,进行实时预测的过程。如阿里的RTP系统顾名思义,实时预测是相对于非实时预测(离线预测)而言,非实时预测是将训练好
- fast.ai 深度学习笔记(三)
绝不原创的飞龙
人工智能人工智能深度学习笔记
深度学习2:第1部分第6课原文:medium.com/@hiromi_suenaga/deep-learning-2-part-1-lesson-6-de70d626976c译者:飞龙协议:CCBY-NC-SA4.0来自fast.ai课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。第6课[##2017年深度学习优
- 深度学习笔记
stoAir
深度学习笔记人工智能
DeepLearningBasic神经网络:algorithm1input1outputinput2input3input4algorithm2监督学习:1个x对应1个y;Sigmoid:激活函数sigmoid=11+e−xsigmoid=\frac{1}{1+e^{-x}}sigmoid=1+e−x1ReLU:线性整流函数;##LogisticRegression-->binaryclassif
- fast.ai 深度学习笔记(六)
绝不原创的飞龙
人工智能人工智能python深度学习
深度学习2:第2部分第12课原文:medium.com/@hiromi_suenaga/deep-learning-2-part-2-lesson-12-215dfbf04a94译者:飞龙协议:CCBY-NC-SA4.0来自fast.ai课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。生成对抗网络(GANs)视频
- fast.ai 深度学习笔记(一)
绝不原创的飞龙
人工智能人工智能深度学习笔记
深度学习2:第1部分第1课原文:medium.com/@hiromi_suenaga/deep-learning-2-part-1-lesson-1-602f73869197译者:飞龙协议:CCBY-NC-SA4.0来自fast.ai课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。第一课开始[0:00]:为了训练
- 吴恩达深度学习笔记(15)-浅层神经网络之神经网络概述
极客Array
神经网络概述(NeuralNetworkOverview)从今天开始你将学习如何实现一个神经网络。这里只是一个概述,详细的在后面会讲解,看不懂也没关系,先有个概念,就是前向计算然后后向计算,理解了这个就可以了,有一些公式和表达在后面会详细的讲解。在我们深入学习具体技术之前,我希望快速的带你预览一下后续几天你将会学到的东西。现在我们开始快速浏览一下如何实现神经网络。之前我们讨论了逻辑回归,我们了解了
- Tensorflow实战深度学习笔记一
独立开发者Lau
人类直观能力----人工智能(自然语言理解、图像识别、语音识别等)。经验----机器学习。训练----特征相关度。特征提取深度学习---自动地将简单的特征组合成更加复杂的特征,并使用这些复杂特征解决问题。深度学习--------不等于模仿人类大脑。
- 吴恩达深度学习笔记(82)-深度卷积神经网络的发展史
极客Array
为什么要探索发展史(实例分析)?我们首先来看看一些卷积神经网络的实例分析,为什么要看这些实例分析呢?上周我们讲了基本构建,比如卷积层、池化层以及全连接层这些组件。事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络。最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法。实际上在计算机
- 深度学习笔记:灾难性遗忘
UQI-LIUWJ
机器学习笔记
1灾难性遗忘介绍当神经网络被训练去学习新的任务时,它可能会完全忘记如何执行它以前学过的任务。这种现象尤其在所谓的“连续学习”(continuouslearning)或“增量学习”(incrementallearning)场景中很常见2不同视角下看待灾难性遗忘以及对应的解决方法2.1从梯度的视角2.1.1从梯度的视角看灾难性遗忘我们有两个不同任务的损失曲面,用平滑的曲面训练完之后,再在坑坑洼洼的曲面
- 深度学习笔记(九)——tf模型导出保存、模型加载、常用模型导出tflite、权重量化、模型部署
絮沫
深度学习深度学习笔记人工智能
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。本篇博客主要是工具性介绍,可能由于软件版本问题导致的部分内容无法使用。首先介绍tflite:TensorFlowLite是一组工具,可帮助开发者在移动设备、嵌入式设备和loT设备上运行模型,以便实现设备端机器学习。框架具有的主要特性:延时(数据无需往返服务器)隐私(没有任何个人数据离开设备)
- 深度学习笔记(八)——构建网络的常用辅助增强方法:数据增强扩充、断点续训、可视化和部署预测
絮沫
深度学习深度学习笔记人工智能
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课要构建一个完善可用的神经网络,除了设计网络结构以外,还需要添加一些辅助代码来增强网络运行的稳定性,鲁棒性。可以用来增强的方向主要有个,首先是数据输入前的预处理环节,其次是数据在训练过程中的优化,最后的数据在训练结束后的导出和可视化,同时能够及时保存结
- 深度学习笔记(七)——基于Iris/MNIST数据集构建基础的分类网络算法实战
絮沫
深度学习算法深度学习笔记
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课认识网络的构建结构在神经网络的构建过程中,都避不开以下几个步骤:导入网络和依赖模块原始数据处理和清洗加载训练和测试数据构建网络结构,确定网络优化方法将数据送入网络进行训练,同时判断预测效果保存模型部署算法,使用新的数据进行预测推理使用Keras快速构
- 《动手学深度学习》学习笔记 第10章 注意力机制
北方骑马的萝卜
《手动深度学习》笔记深度学习学习笔记
本系列为《动手学深度学习》学习笔记书籍链接:动手学深度学习笔记是从第四章开始,前面三章为基础知识,有需要的可以自己去看看关于本系列笔记:书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很多,笔记只保留主要内容,同时也是对之前知识的查漏补缺《动手学深度学习》学习笔记第4章多层感知机《动手学深度学习》学习笔记第5章深度学习计算《动手学深度学习》学习笔记第6章卷积神经网络《动手学深度学习》学习笔记
- 深度学习笔记(六)——网络优化(2):参数更新优化器SGD、SGDM、AdaGrad、RMSProp、Adam
絮沫
深度学习深度学习笔记人工智能
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课前言在前面的博文中已经学习了构建神经网络的基础需求,搭建了一个简单的双层网络结构来实现数据的分类。并且了解了激活函数和损失函数在神经网络中发挥的重要用途,其中,激活函数优化了神经元的输出能力,损失函数优化了反向传播时参数更新的趋势。我们知道在简单的反
- 李沐—动手学深度学习笔记
比三毛多一根头发
笔记
目录引言1.2机器学习中的关键组件1.3.1监督学习2.预备知识2.1数据操作2.1.3.广播机制2.1.4.索引和切片2.1.5.节省内存2.1.6.转换为其他Python对象2.2.数据预处理2.2.1.读取数据集2.2.2.处理缺失值2.2.3.转换为张量格式2.3.线性代数2.3.2.向量2.3.5.张量算法的基本性质2.3.6.降维3.线性神经网络4.多层感知机4.1多层感知机4.1.1
- 深度学习笔记(四)——使用TF2构建基础网络的常用函数+简单ML分类实现
絮沫
深度学习深度学习笔记分类
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课TF2基础常用函数1、张量处理类强制数据类型转换:a1=tf.constant([1,2,3],dtype=tf.float64)print(a1)a2=tf.cast(a1,tf.int64)#强制数据类型转换print(a2)查找数据中的最小值和
- 深度学习笔记(三)——NN网络基础概念(神经元模型,梯度下降,反向传播,张量处理)
絮沫
深度学习深度学习笔记网络
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图部分引用自北京大学机器学习公开课人工智能算法的主流分类首先明白一个概念,广义上的人工智能算法并不是只有MachineLearning或DeepLearning,而是一个相对的,能够使用计算机模拟人类智能在一定场景下自动实现一些功能。所以系统控制论中的很多最优控制算法同样可以称之为智能算法
- 深度学习笔记(五)——网络优化(1):学习率自调整、激活函数、损失函数、正则化
絮沫
深度学习深度学习笔记网络tensorflow
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课通过学习已经掌握了主要的基础函数之后具备了搭建一个网络并使其正常运行的能力,那下一步我们还需要进一步对网络中的重要节点进行优化并加深认知。首先我们知道NN(自然神经)网络算法能够相比传统建模类算法发挥更好效果的原因是网络对复杂非线性函数的拟合效果更好
- 《动手学深度学习》学习笔记 第9章 现代循环神经网络
北方骑马的萝卜
《手动深度学习》笔记深度学习学习笔记
本系列为《动手学深度学习》学习笔记书籍链接:动手学深度学习笔记是从第四章开始,前面三章为基础知识,有需要的可以自己去看看关于本系列笔记:书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很多,笔记只保留主要内容,同时也是对之前知识的查漏补缺9.现代循环神经网络 前一章中我们介绍了循环神经网络的基础知识,这种网络可以更好地处理序列数据。我们在文本数据上实现了基于循环神经网络的语言模型,但是对于
- 《动手学深度学习》学习笔记 第8章 循环神经网络
北方骑马的萝卜
《手动深度学习》笔记深度学习学习笔记
本系列为《动手学深度学习》学习笔记书籍链接:动手学深度学习笔记是从第四章开始,前面三章为基础知识,有需要的可以自己去看看关于本系列笔记:书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很多,笔记只保留主要内容,同时也是对之前知识的查漏补缺8.循环神经网络 到目前为止我们默认数据都来自于某种分布,并且所有样本都是独立同分布的(independentlyandidenticallydistri
- 深度学习笔记(二)——Tensorflow环境的安装
絮沫
深度学习深度学习笔记tensorflow
本篇文章只做基本的流程概述,不阐述具体每个软件的详细安装流程,具体的流程网上教程已经非常丰富。主要是给出完整的安装流程,以供参考环境很重要一个好的算法环境往往能够帮助开发者事半功倍,入门学习的时候往往搭建好环境就已经成功了一半。在机器学习或者深度学习的设计研究中,人们往往会使用已经有的网络框架来构建网络模型和设计各种识别分类或者生成算法。主要可以给我们学习和使用的框架这里推荐两个:Tensorfl
- 2022-01-23 深度学习笔记
Luo_淳
专业学习深度学习人工智能
深度学习笔记引言:机器学习——自动寻找函数。1.你想要找什么函数?①Regression——Theoutputofthefunctionisascalar.②BinaryClassification——OnlyoutputYesorNo.举例:输入句子,输出句子positive还是negtive。③Multi-classClassification——分类,输入图片,输出图片中物品的类型。
- 深度学习笔记:下载鸢尾花数据集,并展示所有的属性
BioVS
pythontensorflownumpy
背景:深度学习课程作业。通过此作业,可了解tensorflow、matplotlib、pandas和numpy。可学习到matplot画图及细节设计,如图的颜色、字体大小、循环画图方法等代码:importtensorflowastfimportmatplotlib.pyplotaspltimportpandasaspdimportnumpyasnpTRAIN_URL="http://downloa
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分