点击上方“芋道源码”,选择“设为星标”
做积极的人,而不是积极废人!
源码精品专栏
中文详细注释的开源项目
RPC 框架 Dubbo 源码解析
网络应用框架 Netty 源码解析
消息中间件 RocketMQ 源码解析
数据库中间件 Sharding-JDBC 和 MyCAT 源码解析
作业调度中间件 Elastic-Job 源码解析
分布式事务中间件 TCC-Transaction 源码解析
Eureka 和 Hystrix 源码解析
Java 并发源码
来源:http://rrd.me/ekN8q
何为布隆过滤器
还是以上面的例子为例:
判断逻辑:
多次哈希:
Guava的BloomFilter
创建BloomFilter
最终还是调用:
使用:
算法特点
使用场景
假设遇到这样一个问题:一个网站有 20 亿 url 存在一个黑名单中,这个黑名单要怎么存?若此时随便输入一个 url,你如何快速判断该 url 是否在这个黑名单中?并且需在给定内存空间(比如:500M)内快速判断出。
可能很多人首先想到的会是使用 HashSet
,因为 HashSet
基于 HashMap
,理论上时间复杂度为:O(1)
。达到了快速的目的,但是空间复杂度呢?URL字符串通过Hash得到一个Integer的值,Integer占4个字节,那20亿个URL理论上需要:20亿*4/1024/1024/1024=7.45G
的内存,不满足空间复杂度的要求。
这里就引出本文要介绍的“布隆过滤器”。
百科上对布隆过滤器的介绍是这样的:
布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。
是不是描述的比较抽象?那就直接了解其原理吧!
哈希算法得出的Integer的哈希值最大为:Integer.MAX_VALUE=2147483647
,意思就是任何一个URL的哈希都会在0~2147483647之间。
那么可以定义一个2147483647长度的byte数组,用来存储集合所有可能的值。为了存储这个byte数组,系统只需要:2147483647/8/1024/1024=256M
。
比如:某个URL(X)的哈希是2,那么落到这个byte数组在第二位上就是1,这个byte数组将是:000….00000010,重复的,将这20亿个数全部哈希并落到byte数组中。
如果byte数组上的第二位是1,那么这个URL(X)可能存在。为什么是可能?因为有可能其它URL因哈希碰撞哈希出来的也是2,这就是误判。
但是如果这个byte数组上的第二位是0,那么这个URL(X)就一定不存在集合中。
为了减少因哈希碰撞导致的误判概率,可以对这个URL(X)用不同的哈希算法进行N次哈希,得出N个哈希值,落到这个byte数组上,如果这N个位置没有都为1,那么这个URL(X)就一定不存在集合中。
Guava框架提供了布隆过滤器的具体实现:BloomFilter,使得开发不用再自己写一套算法的实现。
BloomFilter提供了几个重载的静态 create
方法来创建实例:
public static BloomFilter create(Funnel super T> funnel, int expectedInsertions, double fpp);
public static BloomFilter create(Funnel super T> funnel, long expectedInsertions, double fpp);
public static BloomFilter create(Funnel super T> funnel, int expectedInsertions);
public static BloomFilter create(Funnel super T> funnel, long expectedInsertions);
static BloomFilter create(Funnel super T> funnel, long expectedInsertions, double fpp, Strategy strategy);
// 参数含义:
// funnel 指定布隆过滤器中存的是什么类型的数据,有:IntegerFunnel,LongFunnel,StringCharsetFunnel。
// expectedInsertions 预期需要存储的数据量
// fpp 误判率,默认是0.03。
BloomFilter里byte数组的空间大小由 expectedInsertions
, fpp
参数决定,见方法:
static long optimalNumOfBits(long n, double p) {
if (p == 0) {
p = Double.MIN_VALUE;
}
return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
}
真正的byte数组维护在类:BitArray
中。
最后通过:put
和 mightContain
方法,添加元素和判断元素是否存在。
1、因使用哈希判断,时间效率很高。空间效率也是其一大优势。2、有误判的可能,需针对具体场景使用。3、因为无法分辨哈希碰撞,所以不是很好做删除操作。
1、黑名单 2、URL去重 3、单词拼写检查 4、Key-Value缓存系统的Key校验 5、ID校验,比如订单系统查询某个订单ID是否存在,如果不存在就直接返回。
欢迎加入我的知识星球,一起探讨架构,交流源码。加入方式,长按下方二维码噢:
已在知识星球更新源码解析如下:
如果你喜欢这篇文章,喜欢,转发。
生活很美好,明天见(。・ω・。)ノ♡