【转载】使用Pytorch进行图像分类,AI challenger 农作物病害分类竞赛源码解读

1.首先对给的数据进行划分,类型为每个类单独放在一个文件夹中

import json
import shutil
import os
from glob import glob
from tqdm import tqdm
# 此文件的作用是创建每个类的文件夹,以及根据给出来的Json中已经做好的分类,对数据进行对号入座划分。
# 加载json文件得出一个字典,然后根据Key值来提取每个文件到相应的文件夹中,(注意去除了不合理数据)

try:
    for i in range(0,59):
        os.mkdir("./data/train/" + str(i))
except:
    pass
    
file_train = json.load(open("./data/temp/labels/AgriculturalDisease_train_annotations.json","r",encoding="utf-8"))
file_val = json.load(open("./data/temp/labels/AgriculturalDisease_validation_annotations.json","r",encoding="utf-8"))

file_list = file_train + file_val

for file in tqdm(file_list):
    filename = file["image_id"]
    origin_path = "./data/temp/images/" + filename
    ids = file["disease_class"]
    if ids ==  44:
        continue
    if ids == 45:
        continue
    if ids > 45:
        ids = ids -2
    save_path = "./data/train/" + str(ids) + "/"
    shutil.copy(origin_path,save_path)

2.获取增强数据集类的定义

# 数据增强的多种方式,使用自定义的方法。调用只需在dataloader.py文件中的get_item函数中调用类自身参数
# transforms,transforms中集合了compose,compose中列出详细所使用的增强方式。
from __future__ import division
import cv2
import numpy as np
from numpy import random
import math
from sklearn.utils import shuffle
# 常用的增强方式几乎都在这里,只需在compose中列出类名即可
__all__ = ['Compose','RandomHflip', 'RandomUpperCrop', 'Resize', 'UpperCrop', 'RandomBottomCrop',
            "RandomErasing",'BottomCrop', 'Normalize', 'RandomSwapChannels', 'RandomRotate', 
            'RandomHShift',"CenterCrop","RandomVflip",'ExpandBorder', 'RandomResizedCrop',
            'RandomDownCrop', 'DownCrop', 'ResizedCrop',"FixRandomRotate"]
    # 组合
    # “随机翻转”,“随机顶部切割”,“调整大小”,“上切割”,“随机底部切割”、
    # “随机擦除”,“底部切割”,“正则化”,“随机交换频道”,“随机旋转”,
    # “随机HShift”,“中央切割”,“随机Vflip”,“扩展边界”,“随机调整切割”,
    # “随机下降”,“下降切割”, “调整切割”,“固定随机化”。


# 每个增强方式类需要调用普通方法描述如下:
def rotate_nobound(image, angle, center=None, scale=1.):
    (h, w) = image.shape[:2]


    # if the center is None, initialize it as the center of
    # the image
    if center is None:
        center = (w // 2, h // 2)

    # perform the rotation
    M = cv2.getRotationMatrix2D(center, angle, scale)
    rotated = cv2.warpAffine(image, M, (w, h))

    return rotated

def scale_down(src_size, size):
    w, h = size
    sw, sh = src_size
    if sh < h:
        w, h = float(w * sh) / h, sh
    if sw < w:
        w, h = sw, float(h * sw) / w
    return int(w), int(h)


def fixed_crop(src, x0, y0, w, h, size=None):
    out = src[y0:y0 + h, x0:x0 + w]
    if size is not None and (w, h) != size:
        out = cv2.resize(out, (size[0], size[1]), interpolation=cv2.INTER_CUBIC)
    return out

# 固定随机旋转
class FixRandomRotate(object):
    def __init__(self, angles=[0,90,180,270], bound=False):
        self.angles = angles
        self.bound = bound

    def __call__(self,img):
        do_rotate = random.randint(0, 4)
        angle=self.angles[do_rotate]
        if self.bound:
            img = rotate_bound(img, angle)
        else:
            img = rotate_nobound(img, angle)
        return img

def center_crop(src, size):
    h, w = src.shape[0:2]
    new_w, new_h = scale_down((w, h), size)

    x0 = int((w - new_w) / 2)
    y0 = int((h - new_h) / 2)

    out = fixed_crop(src, x0, y0, new_w, new_h, size)
    return out


def bottom_crop(src, size):
    h, w = src.shape[0:2]
    new_w, new_h = scale_down((w, h), size)

    x0 = int((w - new_w) / 2)
    y0 = int((h - new_h) * 0.75)

    out = fixed_crop(src, x0, y0, new_w, new_h, size)
    return out

def rotate_bound(image, angle):
    # grab the dimensions of the image and then determine the
    # center
    h, w = image.shape[:2]

    (cX, cY) = (w // 2, h // 2)

    M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
    cos = np.abs(M[0, 0])
    sin = np.abs(M[0, 1])

    # compute the new bounding dimensions of the image
    nW = int((h * sin) + (w * cos))
    nH = int((h * cos) + (w * sin))

    # adjust the rotation matrix to take into account translation
    M[0, 2] += (nW / 2) - cX
    M[1, 2] += (nH / 2) - cY

    rotated = cv2.warpAffine(image, M, (nW, nH))

    return rotated



# 常用增强方式,以类的方式体现:
# 将多个transform组合起来使用
crop切割  filp旋转
class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms
    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img
class RandomRotate(object):
    def __init__(self, angles, bound=False):
        self.angles = angles
        self.bound = bound

    def __call__(self,img):
        do_rotate = random.randint(0, 2)
        if do_rotate:
            angle = np.random.uniform(self.angles[0], self.angles[1])
            if self.bound:
                img = rotate_bound(img, angle)
            else:
                img = rotate_nobound(img, angle)
        return img
class RandomBrightness(object):
    def __init__(self, delta=10):
        assert delta >= 0
        assert delta <= 255
        self.delta = delta

    def __call__(self, image):
        if random.randint(2):
            delta = random.uniform(-self.delta, self.delta)
            image = (image + delta).clip(0.0, 255.0)
            # print('RandomBrightness,delta ',delta)
        return image


class RandomContrast(object):
    def __init__(self, lower=0.9, upper=1.05):
        self.lower = lower
        self.upper = upper
        assert self.upper >= self.lower, "contrast upper must be >= lower."
        assert self.lower >= 0, "contrast lower must be non-negative."

    # expects float image
    def __call__(self, image):
        if random.randint(2):
            alpha = random.uniform(self.lower, self.upper)
            # print('contrast:', alpha)
            image = (image * alpha).clip(0.0,255.0)
        return image


class RandomSaturation(object):
    def __init__(self, lower=0.8, upper=1.2):
        self.lower = lower
        self.upper = upper
        assert self.upper >= self.lower, "contrast upper must be >= lower."
        assert self.lower >= 0, "contrast lower must be non-negative."

    def __call__(self, image):
        if random.randint(2):
            alpha = random.uniform(self.lower, self.upper)
            image[:, :, 1] *= alpha
            # print('RandomSaturation,alpha',alpha)
        return image


class RandomHue(object):
    def __init__(self, delta=18.0):
        assert delta >= 0.0 and delta <= 360.0
        self.delta = delta

    def __call__(self, image):
        if random.randint(2):
            alpha = random.uniform(-self.delta, self.delta)
            image[:, :, 0] += alpha
            image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
            image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
            # print('RandomHue,alpha:', alpha)
        return image


class ConvertColor(object):
    def __init__(self, current='BGR', transform='HSV'):
        self.transform = transform
        self.current = current

    def __call__(self, image):
        if self.current == 'BGR' and self.transform == 'HSV':
            image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        elif self.current == 'HSV' and self.transform == 'BGR':
            image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
        else:
            raise NotImplementedError
        return image

class RandomSwapChannels(object):
    def __call__(self, img):
        if np.random.randint(2):
            order = np.random.permutation(3)
            return img[:,:,order]
        return img

class RandomCrop(object):
    def __init__(self, size):
        self.size = size
    def __call__(self, image):
        h, w, _ = image.shape
        new_w, new_h = scale_down((w, h), self.size)

        if w == new_w:
            x0 = 0
        else:
            x0 = random.randint(0, w - new_w)

        if h == new_h:
            y0 = 0
        else:
            y0 = random.randint(0, h - new_h)

        out = fixed_crop(image, x0, y0, new_w, new_h, self.size)
        return out



class RandomResizedCrop(object):
    def __init__(self, size,scale=(0.49, 1.0), ratio=(1., 1.)):
        self.size = size
        self.scale = scale
        self.ratio = ratio

    def __call__(self,img):
        if random.random() < 0.2:
            return cv2.resize(img,self.size)
        h, w, _ = img.shape
        area = h * w
        d=1
        for attempt in range(10):
            target_area = random.uniform(self.scale[0], self.scale[1]) * area
            aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])


            new_w = int(round(math.sqrt(target_area * aspect_ratio)))
            new_h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                new_h, new_w = new_w, new_h

            if new_w < w and new_h < h:
                x0 = random.randint(0, w - new_w)
                y0 = (random.randint(0, h - new_h))//d
                out = fixed_crop(img, x0, y0, new_w, new_h, self.size)

                return out

        # Fallback
        return center_crop(img, self.size)


class DownCrop():
    def __init__(self, size,  select, scale=(0.36,0.81)):
        self.size = size
        self.scale = scale
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx
        if attr_idx == 0:
            self.scale=(0.64,1.0)
        h, w, _ = img.shape
        area = h * w

        s = (self.scale[0]+self.scale[1])/2.0

        target_area = s * area

        new_w = int(round(math.sqrt(target_area)))
        new_h = int(round(math.sqrt(target_area)))

        if new_w < w and new_h < h:
            dw = w-new_w
            x0 = int(0.5*dw)
            y0 = h-new_h
            out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
            return out, attr_idx

        # Fallback
        return center_crop(img, self.size), attr_idx


class ResizedCrop(object):
    def __init__(self, size, select,scale=(0.64, 1.0), ratio=(3. / 4., 4. / 3.)):
        self.size = size
        self.scale = scale
        self.ratio = ratio
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx
        h, w, _ = img.shape
        area = h * w
        d=1
        if attr_idx == 2:
            self.scale=(0.36,0.81)
            d=2
        if attr_idx == 0:
            self.scale=(0.81,1.0)

        target_area = (self.scale[0]+self.scale[1])/2.0 * area
        # aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])


        new_w = int(round(math.sqrt(target_area)))
        new_h = int(round(math.sqrt(target_area)))

        # if random.random() < 0.5:
        #     new_h, new_w = new_w, new_h

        if new_w < w and new_h < h:
            x0 =  (w - new_w)//2
            y0 = (h - new_h)//d//2
            out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
            # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
            # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
            #
            # cv2.waitKey(0)
            return out, attr_idx

        # Fallback
        return center_crop(img, self.size), attr_idx

class RandomHflip(object):
    def __call__(self, image):
        if random.randint(2):
            return cv2.flip(image, 1)
        else:
            return image
class RandomVflip(object):
    def __call__(self, image):
        if random.randint(2):
            return cv2.flip(image, 0)
        else:
            return image


class Hflip(object):
    def __init__(self,doHflip):
        self.doHflip = doHflip

    def __call__(self, image):
        if self.doHflip:
            return cv2.flip(image, 1)
        else:
            return image


class CenterCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, image):
        return center_crop(image, self.size)

class UpperCrop():
    def __init__(self, size, scale=(0.09, 0.64)):
        self.size = size
        self.scale = scale

    def __call__(self,img):
        h, w, _ = img.shape
        area = h * w

        s = (self.scale[0]+self.scale[1])/2.0

        target_area = s * area

        new_w = int(round(math.sqrt(target_area)))
        new_h = int(round(math.sqrt(target_area)))

        if new_w < w and new_h < h:
            dw = w-new_w
            x0 = int(0.5*dw)
            y0 = 0
            out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
            return out

        # Fallback
        return center_crop(img, self.size)



class RandomUpperCrop(object):
    def __init__(self, size, select, scale=(0.09, 0.64), ratio=(3. / 4., 4. / 3.)):
        self.size = size
        self.scale = scale
        self.ratio = ratio
        self.select = select

    def __call__(self,img, attr_idx):
        if random.random() < 0.2:
            return img, attr_idx
        if attr_idx not in self.select:
            return img, attr_idx

        h, w, _ = img.shape
        area = h * w
        for attempt in range(10):
            s = random.uniform(self.scale[0], self.scale[1])
            d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
            target_area = s * area
            aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
            new_w = int(round(math.sqrt(target_area * aspect_ratio)))
            new_h = int(round(math.sqrt(target_area / aspect_ratio)))


            # new_w = int(round(math.sqrt(target_area)))
            # new_h = int(round(math.sqrt(target_area)))

            if new_w < w and new_h < h:
                dw = w-new_w
                x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
                y0 = (random.randint(0, h - new_h))//10
                out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
                return out, attr_idx

        # Fallback
        return center_crop(img, self.size), attr_idx
class RandomDownCrop(object):
    def __init__(self, size, select, scale=(0.36, 0.81), ratio=(3. / 4., 4. / 3.)):
        self.size = size
        self.scale = scale
        self.ratio = ratio
        self.select = select

    def __call__(self,img, attr_idx):
        if random.random() < 0.2:
            return img, attr_idx
        if attr_idx not in self.select:
            return img, attr_idx
        if attr_idx == 0:
            self.scale=(0.64,1.0)

        h, w, _ = img.shape
        area = h * w
        for attempt in range(10):
            s = random.uniform(self.scale[0], self.scale[1])
            d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
            target_area = s * area
            aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
            new_w = int(round(math.sqrt(target_area * aspect_ratio)))
            new_h = int(round(math.sqrt(target_area / aspect_ratio)))
            #
            # new_w = int(round(math.sqrt(target_area)))
            # new_h = int(round(math.sqrt(target_area)))

            if new_w < w and new_h < h:
                dw = w-new_w
                x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
                y0 = (random.randint((h - new_h)*9//10, h - new_h))
                out = fixed_crop(img, x0, y0, new_w, new_h, self.size)

                # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
                # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
                #
                # cv2.waitKey(0)

                return out, attr_idx

        # Fallback
        return center_crop(img, self.size), attr_idx

class RandomHShift(object):
    def __init__(self, select, scale=(0.0, 0.2)):
        self.scale = scale
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx
        do_shift_crop = random.randint(0, 2)
        if do_shift_crop:
            h, w, _ = img.shape
            min_shift = int(w*self.scale[0])
            max_shift = int(w*self.scale[1])
            shift_idx = random.randint(min_shift, max_shift)
            direction = random.randint(0,2)
            if direction:
                right_part = img[:, -shift_idx:, :]
                left_part = img[:, :-shift_idx, :]
            else:
                left_part = img[:, :shift_idx, :]
                right_part = img[:, shift_idx:, :]
            img = np.concatenate((right_part, left_part), axis=1)

        # Fallback
        return img, attr_idx


class RandomBottomCrop(object):
    def __init__(self, size, select, scale=(0.4, 0.8)):
        self.size = size
        self.scale = scale
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx

        h, w, _ = img.shape
        area = h * w
        for attempt in range(10):
            s = random.uniform(self.scale[0], self.scale[1])
            d = 0.25 + (0.45 - 0.25) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
            target_area = s * area

            new_w = int(round(math.sqrt(target_area)))
            new_h = int(round(math.sqrt(target_area)))

            if new_w < w and new_h < h:
                dw = w-new_w
                dh = h - new_h
                x0 = random.randint(int((0.5-d)*dw), min(int((0.5+d)*dw)+1,dw))
                y0 = (random.randint(max(0,int(0.8*dh)-1), dh))
                out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
                return out, attr_idx

        # Fallback
        return bottom_crop(img, self.size), attr_idx


class BottomCrop():
    def __init__(self, size,  select, scale=(0.4, 0.8)):
        self.size = size
        self.scale = scale
        self.select = select

    def __call__(self,img, attr_idx):
        if attr_idx not in self.select:
            return img, attr_idx

        h, w, _ = img.shape
        area = h * w

        s = (self.scale[0]+self.scale[1])/3.*2.

        target_area = s * area

        new_w = int(round(math.sqrt(target_area)))
        new_h = int(round(math.sqrt(target_area)))

        if new_w < w and new_h < h:
            dw = w-new_w
            dh = h-new_h
            x0 = int(0.5*dw)
            y0 = int(0.9*dh)
            out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
            return out, attr_idx

        # Fallback
        return bottom_crop(img, self.size), attr_idx



class Resize(object):
    def __init__(self, size, inter=cv2.INTER_CUBIC):
        self.size = size
        self.inter = inter

    def __call__(self, image):
        return cv2.resize(image, (self.size[0], self.size[0]), interpolation=self.inter)

class ExpandBorder(object):
    def __init__(self,  mode='constant', value=255, size=(336,336), resize=False):
        self.mode = mode
        self.value = value
        self.resize = resize
        self.size = size

    def __call__(self, image):
        h, w, _ = image.shape
        if h > w:
            pad1 = (h-w)//2
            pad2 = h - w - pad1
            if self.mode == 'constant':
                image = np.pad(image, ((0, 0), (pad1, pad2), (0, 0)),
                               self.mode, constant_values=self.value)
            else:
                image = np.pad(image,((0,0), (pad1, pad2),(0,0)), self.mode)
        elif h < w:
            pad1 = (w-h)//2
            pad2 = w-h - pad1
            if self.mode == 'constant':
                image = np.pad(image, ((pad1, pad2),(0, 0), (0, 0)),
                               self.mode,constant_values=self.value)
            else:
                image = np.pad(image, ((pad1, pad2), (0, 0), (0, 0)),self.mode)
        if self.resize:
            image = cv2.resize(image, (self.size[0], self.size[0]),interpolation=cv2.INTER_LINEAR)
        return image
class AstypeToInt():
    def __call__(self, image, attr_idx):
        return image.clip(0,255.0).astype(np.uint8), attr_idx

class AstypeToFloat():
    def __call__(self, image, attr_idx):
        return image.astype(np.float32), attr_idx

import matplotlib.pyplot as plt
class Normalize(object):
    def __init__(self,mean, std):
        '''
        :param mean: RGB order
        :param std:  RGB order
        '''
        self.mean = np.array(mean).reshape(3,1,1)
        self.std = np.array(std).reshape(3,1,1)
    def __call__(self, image):
        '''
        :param image:  (H,W,3)  RGB
        :return:
        '''
        # plt.figure(1)
        # plt.imshow(image)
        # plt.show()
        return (image.transpose((2, 0, 1)) / 255. - self.mean) / self.std

class RandomErasing(object):
    def __init__(self, select,EPSILON=0.5,sl=0.02, sh=0.09, r1=0.3, mean=[0.485, 0.456, 0.406]):
        self.EPSILON = EPSILON
        self.mean = mean
        self.sl = sl
        self.sh = sh
        self.r1 = r1
        self.select = select

    def __call__(self, img,attr_idx):
        if attr_idx not in self.select:
            return img,attr_idx

        if random.uniform(0, 1) > self.EPSILON:
            return img,attr_idx

        for attempt in range(100):
            area = img.shape[1] * img.shape[2]

            target_area = random.uniform(self.sl, self.sh) * area
            aspect_ratio = random.uniform(self.r1, 1 / self.r1)

            h = int(round(math.sqrt(target_area * aspect_ratio)))
            w = int(round(math.sqrt(target_area / aspect_ratio)))

            if w <= img.shape[2] and h <= img.shape[1]:
                x1 = random.randint(0, img.shape[1] - h)
                y1 = random.randint(0, img.shape[2] - w)
                if img.shape[0] == 3:
                    # img[0, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                    # img[1, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                    # img[2, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                    img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
                    img[1, x1:x1 + h, y1:y1 + w] = self.mean[1]
                    img[2, x1:x1 + h, y1:y1 + w] = self.mean[2]
                    # img[:, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(3, h, w))
                else:
                    img[0, x1:x1 + h, y1:y1 + w] = self.mean[1]
                    # img[0, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(1, h, w))
                return img,attr_idx

        return img,attr_idx

if __name__ == '__main__':
    import matplotlib.pyplot as plt


    class FSAug(object):
        def __init__(self):
            self.augment = Compose([
                AstypeToFloat(),
                # RandomHShift(scale=(0.,0.2),select=range(8)),
                # RandomRotate(angles=(-20., 20.), bound=True),
                ExpandBorder(select=range(8), mode='symmetric'),# symmetric
                # Resize(size=(336, 336), select=[ 2, 7]),
                AstypeToInt()
            ])

        def __call__(self, spct,attr_idx):
            return self.augment(spct,attr_idx)


    trans = FSAug()

    img_path = '/media/gserver/data/FashionAI/round2/train/Images/coat_length_labels/0b6b4a2146fc8616a19fcf2026d61d50.jpg'
    img = cv2.cvtColor(cv2.imread(img_path),cv2.COLOR_BGR2RGB)
    img_trans,_ = trans(img,5)
    # img_trans2,_ = trans(img,6)

    plt.figure()
    plt.subplot(221)
    plt.imshow(img)

    plt.subplot(222)
    plt.imshow(img_trans)

    # plt.subplot(223)
    # plt.imshow(img_trans2)
    # plt.imshow(img_trans2)
    plt.show()

方式二:  用于线下增强数据,采用的方法是

  • 高斯噪声
  • 亮度变化
  • 左右翻转
  • 上下翻转
  • 色彩抖动
  • 对化
  • 锐度变化
    from PIL import Image,ImageEnhance,ImageFilter,ImageOps
    import os
    import shutil
    import numpy as np
    import cv2
    import random
    from skimage.util import random_noise
    from skimage import exposure
    
    
    image_number = 0
    
    raw_path = "./data/train/"
    
    new_path = "./aug/train/"
    
    # 加高斯噪声
    def addNoise(img):
        '''
        注意:输出的像素是[0,1]之间,所以乘以5得到[0,255]之间
        '''
        return random_noise(img, mode='gaussian', seed=13, clip=True)*255
    
    def changeLight(img):
        rate = random.uniform(0.5, 1.5)
        # print(rate)
        img = exposure.adjust_gamma(img, rate) #大于1为调暗,小于1为调亮;1.05
        return img
    
    try:
        for i in range(59):
            os.makedirs(new_path + os.sep + str(i))
        except:
            pass
    
    for raw_dir_name in range(59):
    
        raw_dir_name = str(raw_dir_name)
    
        saved_image_path = new_path + raw_dir_name+"/"
    
        raw_image_path = raw_path + raw_dir_name+"/"
    
        if not os.path.exists(saved_image_path):
    
            os.mkdir(saved_image_path)
    
        raw_image_file_name = os.listdir(raw_image_path)
    
        raw_image_file_path = []
    
        for i in raw_image_file_name:
    
            raw_image_file_path.append(raw_image_path+i)
    
        for x in raw_image_file_path:
    
            img = Image.open(x)
            cv_image = cv2.imread(x)
    
            # 高斯噪声
            gau_image = addNoise(cv_image)
            # 随机改变
            light = changeLight(cv_image)
            light_and_gau = addNoise(light)
    
            cv2.imwrite(saved_image_path + "gau_" + os.path.basename(x),gau_image)
            cv2.imwrite(saved_image_path + "light_" + os.path.basename(x),light)
            cv2.imwrite(saved_image_path + "gau_light" + os.path.basename(x),light_and_gau)
            #img = img.resize((800,600))
    
            #1.翻转 
    
            img_flip_left_right = img.transpose(Image.FLIP_LEFT_RIGHT)
    
            img_flip_top_bottom = img.transpose(Image.FLIP_TOP_BOTTOM)
    
            #2.旋转 
    
            #img_rotate_90 = img.transpose(Image.ROTATE_90)
    
            #img_rotate_180 = img.transpose(Image.ROTATE_180)
    
            #img_rotate_270 = img.transpose(Image.ROTATE_270)
    
            #img_rotate_90_left = img_flip_left_right.transpose(Image.ROTATE_90)
    
            #img_rotate_270_left = img_flip_left_right.transpose(Image.ROTATE_270)
    
            #3.亮度
    
            #enh_bri = ImageEnhance.Brightness(img)
            #brightness = 1.5
            #image_brightened = enh_bri.enhance(brightness)
    
            #4.色彩
    
            #enh_col = ImageEnhance.Color(img)
            #color = 1.5
    
            #image_colored = enh_col.enhance(color)
    
            #5.对比度
    
            enh_con = ImageEnhance.Contrast(img)
    
            contrast = 1.5
    
            image_contrasted = enh_con.enhance(contrast)
    
            #6.锐度
    
            #enh_sha = ImageEnhance.Sharpness(img)
            #sharpness = 3.0
    
            #image_sharped = enh_sha.enhance(sharpness)
    
            #保存 
    
            img.save(saved_image_path + os.path.basename(x))
    
            img_flip_left_right.save(saved_image_path + "left_right_" + os.path.basename(x))
    
            img_flip_top_bottom.save(saved_image_path + "top_bottom_" + os.path.basename(x))
    
            #img_rotate_90.save(saved_image_path + "rotate_90_" + os.path.basename(x))
    
            #img_rotate_180.save(saved_image_path + "rotate_180_" + os.path.basename(x))
    
            #img_rotate_270.save(saved_image_path + "rotate_270_" + os.path.basename(x))
    
            #img_rotate_90_left.save(saved_image_path + "rotate_90_left_" + os.path.basename(x))
    
            #img_rotate_270_left.save(saved_image_path + "rotate_270_left_" + os.path.basename(x))
    
            #image_brightened.save(saved_image_path + "brighted_" + os.path.basename(x))
    
            #image_colored.save(saved_image_path + "colored_" + os.path.basename(x))
    
            image_contrasted.save(saved_image_path + "contrasted_" + os.path.basename(x))
    
            #image_sharped.save(saved_image_path + "sharped_" + os.path.basename(x))
    
            image_number += 1
    
            print("convert pictur" "es :%s size:%s mode:%s" % (image_number, img.size, img.mode))

    加载数据的类(自定义继承)

  • 与pytorch中的加载数据类差不多,只是多了自己的某些功能。
  • from torch.utils.data import Dataset
    from torchvision import transforms as T 
    from config import config
    from PIL import Image 
    from itertools import chain 
    from glob import glob
    from tqdm import tqdm
    import random 
    import numpy as np 
    import pandas as pd 
    import os 
    import cv2
    import torch 
    
    #1.set random seed
    random.seed(config.seed)
    np.random.seed(config.seed)
    torch.manual_seed(config.seed)
    torch.cuda.manual_seed_all(config.seed)
    
    #2.define dataset
    class ZiyiDataset(Dataset):
        def __init__(self,label_list,transforms=None,train=True,test=False):
            self.test = test 
            self.train = train 
            imgs = []
            if self.test:
                for index,row in label_list.iterrows():
                    imgs.append((row["filename"]))
                self.imgs = imgs 
            else:
                for index,row in label_list.iterrows():
                    imgs.append((row["filename"],row["label"]))
                self.imgs = imgs
            if transforms is None:
                if self.test or not train:
                    self.transforms = T.Compose([
                        T.Resize((config.img_weight,config.img_height)),
                        T.ToTensor(),
                        T.Normalize(mean = [0.485,0.456,0.406],
                                    std = [0.229,0.224,0.225])])
                else:
                    self.transforms  = T.Compose([
                        T.Resize((config.img_weight,config.img_height)),
                        T.RandomRotation(30),
                        T.RandomHorizontalFlip(),
                        T.RandomVerticalFlip(),
                        T.RandomAffine(45),
                        T.ToTensor(),
                        T.Normalize(mean = [0.485,0.456,0.406],
                                    std = [0.229,0.224,0.225])])
            else:
                self.transforms = transforms
        def __getitem__(self,index):
            if self.test:
                filename = self.imgs[index]
                img = Image.open(filename)
                img = self.transforms(img)
                return img,filename
            else:
                filename,label = self.imgs[index] 
                img = Image.open(filename)
                img = self.transforms(img)
                return img,label
        def __len__(self):
            return len(self.imgs)
    
    def collate_fn(batch):
        imgs = []
        label = []
        for sample in batch:
            imgs.append(sample[0])
            label.append(sample[1])
    
        return torch.stack(imgs, 0), \
               label
    
    def get_files(root,mode):
        #for test
        if mode == "test":
            files = []
            for img in os.listdir(root):
                files.append(root + img)
            files = pd.DataFrame({"filename":files})
            return files
        elif mode != "test": 
            #for train and val       
            all_data_path,labels = [],[]
            image_folders = list(map(lambda x:root+x,os.listdir(root)))
            jpg_image_1 = list(map(lambda x:glob(x+"/*.jpg"),image_folders))
            jpg_image_2 = list(map(lambda x:glob(x+"/*.JPG"),image_folders))
            all_images = list(chain.from_iterable(jpg_image_1 + jpg_image_2))
            print("loading train dataset")
            for file in tqdm(all_images):
                all_data_path.append(file)
                labels.append(int(file.split("/")[-2]))
            all_files = pd.DataFrame({"filename":all_data_path,"label":labels})
            return all_files
        else:
            print("check the mode please!")

    3.获取模型

  • 获取模型较为简单,单一模型采取pytorch中的预训练模型,添加所需要的层,进行微调然后迁移学习新数据。
    import torchvision
    import torch.nn.functional as F 
    from torch import nn
    from config import config
    
    def generate_model():
        class DenseModel(nn.Module):
            def __init__(self, pretrained_model):
                super(DenseModel, self).__init__()
                self.classifier = nn.Linear(pretrained_model.classifier.in_features, config.num_classes)
    
                for m in self.modules():
                    if isinstance(m, nn.Conv2d):
                        nn.init.kaiming_normal(m.weight)
                    elif isinstance(m, nn.BatchNorm2d):
                        m.weight.data.fill_(1)
                        m.bias.data.zero_()
                    elif isinstance(m, nn.Linear):
                        m.bias.data.zero_()
    
                self.features = pretrained_model.features
                self.layer1 = pretrained_model.features._modules['denseblock1']
                self.layer2 = pretrained_model.features._modules['denseblock2']
                self.layer3 = pretrained_model.features._modules['denseblock3']
                self.layer4 = pretrained_model.features._modules['denseblock4']
    
            def forward(self, x):
                features = self.features(x)
                out = F.relu(features, inplace=True)
                out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
                out = F.sigmoid(self.classifier(out))
                return out
    
        return DenseModel(torchvision.models.densenet169(pretrained=True))
    
    def get_net():
        #return MyModel(torchvision.models.resnet101(pretrained = True))
        model = torchvision.models.resnet50(pretrained = True)    
        #for param in model.parameters():
        #    param.requires_grad = False
        # pytorch添加层的方式直接在Model.层名=层具体形式
        model.avgpool = nn.AdaptiveAvgPool2d(1)
        model.fc = nn.Linear(2048,config.num_classes)  #添加全连接层以作分类任务,num_classes为分类个数
        return model

     4.开始训练

  • import os 
    import random 
    import time
    import json
    import torch
    import torchvision
    import numpy as np 
    import pandas as pd 
    import warnings
    from datetime import datetime
    from torch import nn,optim
    from config import config 
    from collections import OrderedDict
    from torch.autograd import Variable 
    from torch.utils.data import DataLoader
    from dataset.dataloader import *
    from sklearn.model_selection import train_test_split,StratifiedKFold
    from timeit import default_timer as timer
    from models.model import *
    from utils import *
    
    #1. 设置随机种子 and cudnn performance
    random.seed(config.seed)
    np.random.seed(config.seed)
    torch.manual_seed(config.seed)
    torch.cuda.manual_seed_all(config.seed)
    os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus
    torch.backends.cudnn.benchmark = True
    warnings.filterwarnings('ignore')
    
    #2. 评估函数,通过Losses,topk的不断更新来评估模型
    def evaluate(val_loader,model,criterion):
        #2.1 AverageMeter类是Computes and stores the average and current value
        # 创建三个其对象,以用于评估
        losses = AverageMeter()
        top1 = AverageMeter()
        top2 = AverageMeter()
        #2.2 开启评估模式 and confirm model has been transfered to cuda
        model.cuda()
        model.eval()
        with torch.no_grad():
            for i,(input,target) in enumerate(val_loader):
                input = Variable(input).cuda()
                target = Variable(torch.from_numpy(np.array(target)).long()).cuda()
                #target = Variable(target).cuda()
                #2.2.1 compute output
                output = model(input)
                loss = criterion(output,target)
    
                #2.2.2 measure accuracy and record loss
                precision1,precision2 = accuracy(output,target,topk=(1,2))
                losses.update(loss.item(),input.size(0))
                top1.update(precision1[0],input.size(0))
                top2.update(precision2[0],input.size(0))
    
        return [losses.avg,top1.avg,top2.avg]
    
    #3. test model on public dataset and save the probability matrix
    
    def test(test_loader,model,folds):
        #3.1 confirm the model converted to cuda
        # 得出的结果是概率,再用softmax得出最终分类结果
        csv_map = OrderedDict({"filename":[],"probability":[]})
        model.cuda()
        model.eval()
        with open("./submit/baseline.json","w",encoding="utf-8") as f :
            submit_results = []
            for i,(input,filepath) in enumerate(tqdm(test_loader)):
                # filepath??????
                # 通过模型得到输出概率结果,再用softmax得出预测结果,写入文件。
                #3.2 change everything to cuda and get only basename
                filepath = [os.path.basename(x) for x in filepath]
                with torch.no_grad():
                    image_var = Variable(input).cuda()
                    #3.3.output
                    #print(filepath)
                    #print(input,input.shape)
                    y_pred = model(image_var)
                    #print(y_pred.shape)
                    smax = nn.Softmax(1)
                    smax_out = smax(y_pred)
                #3.4 save probability to csv files
                csv_map["filename"].extend(filepath)
                for output in smax_out:
                    prob = ";".join([str(i) for i in output.data.tolist()])
                    csv_map["probability"].append(prob)
            result = pd.DataFrame(csv_map)
            result["probability"] = result["probability"].map(lambda x : [float(i) for i in x.split(";")])
            for index, row in result.iterrows():
                # 因为44,45类删除,所以预测结果加2
                pred_label = np.argmax(row['probability'])
                if pred_label > 43:
                    pred_label = pred_label + 2
                submit_results.append({"image_id":row['filename'],"disease_class":pred_label})
            json.dump(submit_results,f,ensure_ascii=False,cls = MyEncoder)
    
    #4. more details to build main function    
    def main():
        fold = 0
        #4.1 mkdirs
        if not os.path.exists(config.submit):
            os.mkdir(config.submit)
        if not os.path.exists(config.weights):
            os.mkdir(config.weights)
        if not os.path.exists(config.best_models):
            os.mkdir(config.best_models)
        if not os.path.exists(config.logs):
            os.mkdir(config.logs)
        if not os.path.exists(config.weights + config.model_name + os.sep +str(fold) + os.sep):
            os.makedirs(config.weights + config.model_name + os.sep +str(fold) + os.sep)
        if not os.path.exists(config.best_models + config.model_name + os.sep +str(fold) + os.sep):
            os.makedirs(config.best_models + config.model_name + os.sep +str(fold) + os.sep)       
        #4.2 get model and optimizer
        model = get_net()
        #model = torch.nn.DataParallel(model)
        model.cuda()
        #optimizer = optim.SGD(model.parameters(),lr = config.lr,momentum=0.9,weight_decay=config.weight_decay)
        optimizer = optim.Adam(model.parameters(),lr = config.lr,amsgrad=True,weight_decay=config.weight_decay)
        criterion = nn.CrossEntropyLoss().cuda()
        #criterion = FocalLoss().cuda()
        log = Logger()
        log.open(config.logs + "log_train.txt",mode="a")
        log.write("\n----------------------------------------------- [START %s] %s\n\n" % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), '-' * 51))
        #4.3 some parameters for  K-fold and restart model
        start_epoch = 0
        best_precision1 = 0
        best_precision_save = 0
        resume = False
        
        #4.4 restart the training process
        if resume:
            checkpoint = torch.load(config.best_models + str(fold) + "/model_best.pth.tar")
            start_epoch = checkpoint["epoch"]
            fold = checkpoint["fold"]
            best_precision1 = checkpoint["best_precision1"]
            model.load_state_dict(checkpoint["state_dict"])
            optimizer.load_state_dict(checkpoint["optimizer"])
    
        #4.5 get files and split for K-fold dataset
        #4.5.1 read files
        train_ = get_files(config.train_data,"train")
        #val_data_list = get_files(config.val_data,"val")
        test_files = get_files(config.test_data,"test")
    
        """ 
        #4.5.2 split
        split_fold = StratifiedKFold(n_splits=3)
        folds_indexes = split_fold.split(X=origin_files["filename"],y=origin_files["label"])
        folds_indexes = np.array(list(folds_indexes))
        fold_index = folds_indexes[fold]
    
        #4.5.3 using fold index to split for train data and val data
        train_data_list = pd.concat([origin_files["filename"][fold_index[0]],origin_files["label"][fold_index[0]]],axis=1)
        val_data_list = pd.concat([origin_files["filename"][fold_index[1]],origin_files["label"][fold_index[1]]],axis=1)
        """
        train_data_list,val_data_list = train_test_split(train_,test_size = 0.15,stratify=train_["label"])
        #4.5.4 load dataset
        train_dataloader = DataLoader(ZiyiDataset(train_data_list),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=True)
        val_dataloader = DataLoader(ZiyiDataset(val_data_list,train=False),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=False)
        test_dataloader = DataLoader(ZiyiDataset(test_files,test=True),batch_size=1,shuffle=False,pin_memory=False)
        #scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,"max",verbose=1,patience=3)
        scheduler =  optim.lr_scheduler.StepLR(optimizer,step_size = 10,gamma=0.1)
        # optim.lr_scheduler 提供了基于多种epoch数目调整学习率的方法
        # step_size(整数类型): 调整学习率的步长,每过step_size次,更新一次学习率
        # gamma(float 类型):学习率下降的乘数因子
        #4.5.5.1 define metrics
        train_losses = AverageMeter()
        train_top1 = AverageMeter()
        train_top2 = AverageMeter()
        valid_loss = [np.inf,0,0]
        model.train()
        #logs
        log.write('** start training here! **\n')
        log.write('                           |------------ VALID -------------|----------- TRAIN -------------|------Accuracy------|------------|\n')
        log.write('lr       iter     epoch    | loss   top-1  top-2            | loss   top-1  top-2           |    Current Best    | time       |\n')
        log.write('-------------------------------------------------------------------------------------------------------------------------------\n')
        #4.5.5 train
        start = timer()
        for epoch in range(start_epoch,config.epochs):
            # 一个epoch为所有数据迭代一次进入模型拟合的过程,其中又分为batch_size来分批次进行
            scheduler.step(epoch)
            # train
            #global iter
            for iter,(input,target) in enumerate(train_dataloader):
                #4.5.5 switch to continue train process
                model.train()
                input = Variable(input).cuda()
                target = Variable(torch.from_numpy(np.array(target)).long()).cuda()
                #target = Variable(target).cuda()
                output = model(input)
                loss = criterion(output,target)
    
                precision1_train,precision2_train = accuracy(output,target,topk=(1,2))
                train_losses.update(loss.item(),input.size(0))
                train_top1.update(precision1_train[0],input.size(0))
                train_top2.update(precision2_train[0],input.size(0))
                #backward
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                lr = get_learning_rate(optimizer)
                print('\r',end='',flush=True)
                print('%0.4f %5.1f %6.1f        | %0.3f  %0.3f  %0.3f         | %0.3f  %0.3f  %0.3f         |         %s         | %s' % (\
                             lr, iter/len(train_dataloader) + epoch, epoch,
                             valid_loss[0], valid_loss[1], valid_loss[2],
                             train_losses.avg, train_top1.avg, train_top2.avg,str(best_precision_save),
                             time_to_str((timer() - start),'min'))
                , end='',flush=True)
            #evaluate
            lr = get_learning_rate(optimizer)
            #evaluate every half epoch
            valid_loss = evaluate(val_dataloader,model,criterion)
            is_best = valid_loss[1] > best_precision1
            best_precision1 = max(valid_loss[1],best_precision1)
            try:
                best_precision_save = best_precision1.cpu().data.numpy()
            except:
                pass
            save_checkpoint({
                        "epoch":epoch + 1,
                        "model_name":config.model_name,
                        "state_dict":model.state_dict(),
                        "best_precision1":best_precision1,
                        "optimizer":optimizer.state_dict(),
                        "fold":fold,
                        "valid_loss":valid_loss,
            },is_best,fold)
            #adjust learning rate
            #scheduler.step(valid_loss[1])
            print("\r",end="",flush=True)
            log.write('%0.4f %5.1f %6.1f        | %0.3f  %0.3f  %0.3f          | %0.3f  %0.3f  %0.3f         |         %s         | %s' % (\
                            lr, 0 + epoch, epoch,
                            valid_loss[0], valid_loss[1], valid_loss[2],
                            train_losses.avg,    train_top1.avg,    train_top2.avg, str(best_precision_save),
                            time_to_str((timer() - start),'min'))
                    )
            log.write('\n')
            time.sleep(0.01)
        best_model = torch.load(config.best_models + os.sep+config.model_name+os.sep+ str(fold) +os.sep+ 'model_best.pth.tar')
        model.load_state_dict(best_model["state_dict"])
        test(test_dataloader,model,fold)
    
    if __name__ =="__main__":
        main()

     

你可能感兴趣的:(pytorch,植物病害,计算机视觉)