定义2:若G为n的原根,则当gcd(i,φ(n))==1,Gi也为n的原根
可以通过先求出n的最小原根,来枚举得到其他的合法原根。
#include
#include
#include
#define ll long long
using namespace std;
const int maxn = 1e6 + 10;
bool vis[maxn] = {0};
int pri[maxn / 10] = {0};
int phi[maxn] = {0};
int n,k;
int temp[maxn] = {0};
int cnt = 0;
ll res[maxn] = {0};
void init () {
for (int i = 2;i < maxn; ++ i) {
if (!vis[i]) {
pri[cnt ++] = i;
for (int j = i + i;j < maxn;j += i) {
vis[j] = 1;
}
}
}
phi[1] = 1;
memset (vis,0,sizeof (vis));
for (int i = 2;i < maxn; ++ i) {
if (!vis[i]) {
for (int j = i;j < maxn; j += i) {
vis[j] = 1;
if (phi[j] == 0) phi[j] = j;
phi[j] = phi[j] / i * (i - 1);
}
}
}
}
void div (int n) {
k = 0;
for (int i = 0;pri[i] * pri[i] <= n; ++ i) {
if (n % pri[i] == 0) {
temp[k ++] = pri[i];
while (n % pri[i] == 0) n /= pri[i];
}
}
if (n > 1) temp[k ++] = n;
}
ll lpow (ll a,ll b,ll m) {
ll ans = 1;
a %= m;
while (b) {
if (b & 1) {
ans = ans * a % m;
b --;
}
b >>= 1;
a = a * a % m;
}
return ans % m;
}
bool check (int n) {
if (n == 2 || n == 4) return true;
if (n % 2 == 0) n /= 2;
if (binary_search (pri + 1,pri + cnt,n)) return true;
for (int i = 1;i < cnt && pri[i] * pri[i] <= n; ++ i) {
if (n % pri[i] == 0) {
while (n % pri[i] == 0) {
n /= pri[i];
}
if (n == 1)return true;
break;
}
}
return false;
}
int main () {
init ();
while (scanf ("%d",&n) != EOF) {
if (n == 2) {
printf ("1\n");
continue ;
}
if (check(n) == 0) {
printf ("-1\n");
continue;
}
int tot = 0;
int p = phi[n];
div (p);
for (int q = 2;q < n; ++ q) {
if (__gcd (q,n) != 1) continue;
int flag = 1;
for (int i = 0;i < k; ++ i) {
int t = p / temp[i];
if (lpow(q, t, n) % n == 1) {
flag = 0;
break;
}
}
if(flag) {
res[tot ++] = q;
break;
}
}
ll cc = res[0];
tot = 0;
for (int i = 1;i < p; ++ i) {
if (__gcd (i,p) == 1) {
res[tot ++] = cc;
}
cc = cc * res[0] % n;
}
sort (res,res + tot);
if (tot) {
printf ("%lld",res[0]);
for (int i = 1;i < tot; ++ i) {
printf (" %lld",res[i]);
}
}
else {
printf ("-1");
}
printf ("\n");
}
return 0;
}