BZOJ 1002 FJOI 2007 轮状病毒 暴力+找规律+高精度

题目大意:

BZOJ 1002 FJOI 2007 轮状病毒 暴力+找规律+高精度_第1张图片


思路:基尔霍夫矩阵求生成树个数,不会。

但是可以暴力打表。(我才不会说我调试force调试了20分钟。。。

CODE(force.cc):


#include 
#include 
#include 
#include 
#define MAX 1000
using namespace std;

struct Edge{
	int x,y;
	
	Edge(int _,int __):x(_),y(__) {}
	Edge() {}
}edge[MAX];

int edges;
int status;

int father[MAX];

int Find(int x)
{
	if(father[x] == x)	return x;
	return father[x] = Find(father[x]);
}

inline bool Unite(int x,int y)
{
	int fx = Find(x);
	int fy = Find(y);
	if(fx != fy) {
		father[fx] = fy;
		return true;
	}
	return false;
}

int main()
{
	for(int i = 1; i <= 20; ++i) {
		edges = 0;
		for(int j = 1; j <= i; ++j)
			edge[++edges] = Edge(0,j);
		for(int j = 1; j < i; ++j)
			edge[++edges] = Edge(j,j + 1);
		edge[++edges] = Edge(i,1);
		int ans = 0;
		for(int j = 1; j <= (1 << edges); ++j) {
			int added = 0;
			for(int k = 0; k <= i; ++k)
				father[k] = k;
			for(int k = 0; k < edges; ++k)
				added += (j >> k)&1;
			if(added  != i)	continue;
			added = 0;
			for(int k = 0; k < edges; ++k)
				if((j >> k)&1)
					added += Unite(edge[k + 1].x,edge[k + 1].y);
			ans += (added == i);
		}
		cout << i << ':' << ans << endl;
	}
	return 0;
}


打出的表是这样的。。

BZOJ 1002 FJOI 2007 轮状病毒 暴力+找规律+高精度_第2张图片

后面的数太大了爆了。。


很明显可以看出奇数的数都是完全平方数。把它们开跟,然后经过艰苦卓绝的分析之后,得到了一个递推式:

f[i] = f[i - 1] + Σf[j] + 2 (j∈[1,i - 1]),答案是f[n] ^ 2

有了这个结论,偶数的就好办了。可以看到,偶数的除以5之后也是完全平方数,和上面很像,它的递推式是:

f[i] = f[i - 1] + Σf[j] + 1 (j∈[i,i - 1]),答案是f[n] ^ 2 * 5

至于为什么递推式长这样,谜。


CODE:


#include 
#include 
#include 
#include 
#include 
#define BASE 10000
#define MAX 1010
using namespace std;

struct BigInt{
	int num[MAX],len;
	
	BigInt(int _ = 0) {
		memset(num,0,sizeof(num));
		len = _ ? 1:0;
		num[1] = _;
	}
	BigInt operator +(const BigInt &a)const {
		BigInt re;
		re.len = max(len,a.len);
		int temp = 0;
		for(int i = 1; i <= re.len; ++i) {
			re.num[i] = num[i] + a.num[i] + temp;
			temp = re.num[i] / BASE;
			re.num[i] %= BASE;
		}
		if(temp)	re.num[++re.len] = temp;
		return re;
	}
	BigInt operator *(const BigInt &a)const {
		BigInt re;
		for(int i = 1; i <= len; ++i)
			for(int j = 1; j <= a.len; ++j) {
				re.num[i + j - 1] += num[i] * a.num[j];
				re.num[i + j] += re.num[i + j - 1] / BASE;
				re.num[i + j - 1] %= BASE;
			}
		re.len = len + a.len;
		if(!re.num[re.len])	--re.len;
		return re;
	}
};

ostream &operator <<(ostream &os,const BigInt &a)
{
	os << a.num[a.len];
	for(int i = a.len - 1; i; --i)
		os << fixed << setw(4) << setfill('0') << a.num[i];
	return os;
}

int k;
BigInt f[110],g[110];

int main()
{
	cin >> k;
	if(k&1) {
		k = (k + 1) >> 1;
		f[1] = BigInt(1),f[2] = BigInt(4);
		g[1] = BigInt(1),g[2] = BigInt(5);
		for(int i = 3; i <= k; ++i) {
			f[i] = f[i - 1] + g[i - 1] + BigInt(2);
			g[i] = g[i - 1] + f[i];
		}
		cout << f[k] * f[k] << endl;
	}
	else {
		k >>= 1;
		f[1] = BigInt(1),f[2] = BigInt(3);
		g[1] = BigInt(1),g[2] = BigInt(4);
		for(int i = 3; i <= k; ++i) {
			f[i] = f[i - 1] + g[i - 1] + BigInt(1);
			g[i] = g[i - 1] + f[i];
		}
		cout << f[k] * f[k] * BigInt(5) << endl;
	}
	return 0;
}


你可能感兴趣的:(BZOJ)