opencv 线性滤波

#include
#include
#include
#include
using namespace cv;
using namespace std;
static void on_ContrastAndBright(int ,void*);
int g_nBoxFilterValue = 3;
int g_nMeanBlurValue =3;
int g_nGaussianBlurValue =3;
Mat  g_srcImage,g_dstImage1,g_dstImage2,g_dstImage3;
static void on_BoxFilter(int,void *);
static void on_MeanBlur(int,void *);
static void on_GaussianBlur(int,void*);
int main()
{
g_srcImage = imread("1.jpg");
if(!g_srcImage.data)
{
printf("%s %d\n",__FUNCTION__,__LINE__);
return -1;
}
g_dstImage1 = g_srcImage.clone();
g_dstImage2 = g_srcImage.clone();
g_dstImage3 = g_srcImage.clone();
namedWindow("<1.yuantu>",WINDOW_AUTOSIZE);
imshow("<1.yuantu>",g_srcImage);
/*方框滤波*/
namedWindow("<2.boxfilterpic>",WINDOW_AUTOSIZE);
createTrackbar("g_nBoxFilterValue","<2.boxfilterpic>",&g_nBoxFilterValue,40,on_BoxFilter);
on_BoxFilter(g_nBoxFilterValue,0);


/*均值滤波*/
namedWindow("<3.meanblur>", WINDOW_AUTOSIZE);
createTrackbar("g_nMeanBlurValue","<3.meanblur>",&g_nMeanBlurValue,40,on_MeanBlur);
on_MeanBlur(g_nMeanBlurValue,0);


/*高斯滤波*/
namedWindow("<4.GaussianBlur",WINDOW_AUTOSIZE);
createTrackbar("g_nGaussianBlurValue","<4.GaussianBlur",&g_nGaussianBlurValue,40,on_GaussianBlur);
on_GaussianBlur(g_nGaussianBlurValue,0);
waitKey(0);
}
static void on_BoxFilter(int ,void*)
{
boxFilter(g_srcImage,g_dstImage1,-1,Size(g_nBoxFilterValue+1,g_nBoxFilterValue=1));
imshow("<2.boxfilterpic>",g_dstImage1);
}
static void on_MeanBlur(int,void *)
{
blur(g_srcImage,g_dstImage2,Size(g_nMeanBlurValue+1,g_nMeanBlurValue+1),Point(- 1,- 1));
imshow("<3.meanblur>",g_dstImage2);
}
static void on_GaussianBlur(int,void *)
{
GaussianBlur(g_srcImage,g_dstImage3,Size(g_nGaussianBlurValue*2+1,g_nGaussianBlurValue*2+1),0,0);
imshow("<4.GaussianBlur",g_dstImage3);

}

运行图如下


你可能感兴趣的:(opencv 线性滤波)