大数据学习之十——MapReduce代码实例:数据去重和数据排序

***数据去重***

目标:原始数据中出现次数超过一次的数据在输出文件中只出现一次。

算法思想:根据reduce的过程特性,会自动根据key来计算输入的value集合,把数据作为key输出给reduce,无论这个数据出现多少次,reduce最终结果中key只能输出一次。

1.实例中每个数据代表输入文件中的一行内容,map阶段采用Hadoop默认的作业输入方式。将value设置为key,并直接输出。 map输出数据的key为数据,将value设置成空值
2.在MapReduce流程中,map的输出经过shuffle过程聚集成后会交给reduce
3.reduce阶段不管每个key有多少个value,它直接将输入的key复制为输出的key,并输出(输出中的value被设置成空)。

大数据学习之十——MapReduce代码实例:数据去重和数据排序_第1张图片

代码实现:

public class testquchong {     

static String INPUT_PATH="hdfs://master:9000/quchong";    //将文件file1和file2放在该目录下

static String OUTPUT_PATH="hdfs://master:9000/quchong/qc";    

static class MyMapper extends Mapper{    //将输入输出作为string类型,对应Text类型

private static Text line=new Text();    //每一行作为一个数据 

protected void map(Object key, Text value, Context context) throws IOException, InterruptedException{   

 line=value;    

context.write(line,new Text(","));     //key是唯一的,作为数据,即实现去重

 }

 }  

 static class MyReduce extends Reducer{   

protected void reduce(Text key,Iterable values,Context context) throws IOException,InterruptedException{      

 context.write(key,new Text(" "));   //map传给reduce的数据已经做完数据去重,输出即可

 }   

}    

public static void main(String[] args) throws Exception{   

Path outputpath=new Path(OUTPUT_PATH);   

Configuration conf=new Configuration();   

Job job=Job.getInstance(conf);     

 job.setMapperClass(MyMapper.class);  

 job.setReducerClass(MyReduce.class);       

 job.setOutputKeyClass(Text.class);  

 job.setOutputValueClass(Text.class);     

 FileInputFormat.setInputPaths(job, INPUT_PATH);  

 FileOutputFormat.setOutputPath(job,outputpath);   

job.waitForCompletion(true);

 }

}

 

***数据排序***

目标:实现多个文件中的数据进行从小到大的排序并输出

算法思想:MapReduce过程中就有排序,它的默认排序规则按照key值进行排序的,如果key为封装int的IntWritable类型,那么MapReduce按照数字大小对key排序,如果key为封装为String的Text类型,那么MapReduce按照字典顺序对字符串排序。
使用封装int的IntWritable型数据结构。也就是在map中将读入的数据转化成IntWritable型,然后作为key值输出(value任意)。reduce拿到之后,将输入的key作为value输出,并根据value-list中元素的个数决定输出的次数。输出的key(即代码中的linenum)是一个全局变量,它统计当前key的位次。

大数据学习之十——MapReduce代码实例:数据去重和数据排序_第2张图片

代码实现:

public class paixu {      

static String INPUT_PATH="hdfs://master:9000/test";  

static String OUTPUT_PATH="hdfs://master:9000/output/sort";    

static class MyMapper extends Mapper{    //选择为Int类型,value值任意

IntWritable output_key=new IntWritable();   

NullWritable output_value=NullWritable.get();   

protected void map(Object key, Object value, Context context) throws IOException, InterruptedException{        

int val=Integer.parseUnsignedInt(value.toString().trim());     //进行数据类型转换

output_key.set(val);   

 context.write(output_key,output_value);   //key值确定

 }  

}    

static class MyReduce extends Reducer{    //输入是map的输出,输出行号和数据为int

IntWritable output_key=new IntWritable();    

int num=1;      

protected void reduce(IntWritable key,Iterable values,Context context) throws IOException,InterruptedException{   

output_key.set(num++);   //循环赋值作为行号

 context.write(output_key,key);    //key为map传入的数据

 }    

public static void main(String[] args) throws Exception{   

Path outputpath=new Path(OUTPUT_PATH);   

Configuration conf=new Configuration();         

Job job=Job.getInstance(conf);   

FileInputFormat.setInputPaths(job, INPUT_PATH);   

FileOutputFormat.setOutputPath(job,outputpath);     

 job.setMapperClass(MyMapper.class);  

 job.setReducerClass(MyReduce.class);     

 job.setMapOutputKeyClass(IntWritable.class);    //因为map和reduce的输出类型不一样

 job.setMapOutputValueClass(NullWritable.class);      

job.setOutputKeyClass(IntWritable.class);   

job.setOutputValueClass(IntWritable.class);     

 job.waitForCompletion(true);  

}

}

 

转载于:https://www.cnblogs.com/m-study/p/8379140.html

你可能感兴趣的:(大数据学习之十——MapReduce代码实例:数据去重和数据排序)