Flink原理与实现:如何生成ExecutionGraph及物理执行图

Flink原理与实现:如何生成ExecutionGraph及物理执行图_第1张图片

ExecutionGraph生成过程

StreamGraph和JobGraph都是在client生成的,这篇文章将描述如何生成ExecutionGraph以及物理执行图。同时会讲解一个作业提交后如何被调度和执行。

client生成JobGraph之后,就通过submitJob提交至JobMaster。
在其构造函数中,会生成ExecutionGraph:

    this.executionGraph = ExecutionGraphBuilder.buildGraph(...)

看下这个方法,比较长,略过了一些次要的代码片断:


     // 流式作业中,schedule mode固定是EAGER的
        executionGraph.setScheduleMode(jobGraph.getScheduleMode());
        executionGraph.setQueuedSchedulingAllowed(jobGraph.getAllowQueuedScheduling());
 // 设置json plan
 // ...

 // 检查executableClass(即operator类),设置最大并发
 // ...
 
    // 按拓扑顺序,获取所有的JobVertex列表
    List<JobVertex> sortedTopology = jobGraph.getVerticesSortedTopologicallyFromSources();
    
    // 根据JobVertex列表,生成execution graph
    executionGraph.attachJobGraph(sortedTopology);
    
    // checkpoint检查

可以看到,生成execution graph的代码,主要是在最后一行,即ExecutionGraph.attachJobGraph方法:

    public void attachJobGraph(List topologiallySorted) throws JobException, IOException {
       // 遍历job vertex
        for (JobVertex jobVertex : topologiallySorted) {
            // 根据每一个job vertex,创建对应的ExecutionVertex
            ExecutionJobVertex ejv = new ExecutionJobVertex(this, jobVertex, 1, rpcCallTimeout, createTimestamp);
            // 将创建的ExecutionJobVertex与前置的IntermediateResult连接起来
            ejv.connectToPredecessors(this.intermediateResults);
        ExecutionJobVertex previousTask = this.tasks.putIfAbsent(jobVertex.getID(), ejv);

    // sanity check
    // ...
    
        this.verticesInCreationOrder.add(ejv);
    }
}

可以看到,创建ExecutionJobVertex的重点就在它的构造函数中:

     // 上面是并行度相关的设置
 // 序列化后的TaskInformation,这个信息很重要
 // 后面deploy的时候会将TaskInformation分发到具体的Task中。
    this.serializedTaskInformation = new SerializedValue<>(new TaskInformation(
        jobVertex.getID(),
        jobVertex.getName(),
        parallelism,
        maxParallelism,
        // 这个就是Task将要执行的Operator的类名
        jobVertex.getInvokableClassName(),
        jobVertex.getConfiguration()));
 
 // ExecutionVertex列表,按照JobVertex并行度设置      
    this.taskVertices = new ExecutionVertex[numTaskVertices];
    
    this.inputs = new ArrayList<>(jobVertex.getInputs().size());
    
    // slot sharing和coLocation相关代码
    // ...
    
    // 创建intermediate results,这是由当前operator的出度确定的,如果当前operator只向下游一个operator输出,则为1
    // 注意一个IntermediateResult包含多个IntermediateResultPartition
    this.producedDataSets = new IntermediateResult[jobVertex.getNumberOfProducedIntermediateDataSets()];

    for (int i = 0; i < jobVertex.getProducedDataSets().size(); i++) {
        final IntermediateDataSet result = jobVertex.getProducedDataSets().get(i);

        this.producedDataSets[i] = new IntermediateResult(
                result.getId(),
                this,
                numTaskVertices,
                result.getResultType());
    }

    // 根据job vertex的并行度,创建对应的ExecutionVertex列表。
    // 即,一个JobVertex/ExecutionJobVertex代表的是一个operator,而
    // 具体的ExecutionVertex则代表了每一个Task
    for (int i = 0; i < numTaskVertices; i++) {
        ExecutionVertex vertex = new ExecutionVertex(
                this, i, this.producedDataSets, timeout, createTimestamp, maxPriorAttemptsHistoryLength);

        this.taskVertices[i] = vertex;
    }
    
    // sanity check
    // ...
    
    // set up the input splits, if the vertex has any
    // 这是batch相关的代码
    // ...
         
    finishedSubtasks = new boolean[parallelism];

ExecutionJobVertex和ExecutionVertex是创建完了,但是ExecutionEdge还没有创建呢,接下来看一下attachJobGraph方法中这一行代码:

    ejv.connectToPredecessors(this.intermediateResults);

这个方法代码如下:

     // 获取输入的JobEdge列表
        List inputs = jobVertex.getInputs();
    // 遍历每条JobEdge        
    for (int num = 0; num < inputs.size(); num++) {
        JobEdge edge = inputs.get(num);
        
        // 获取当前JobEdge的输入所对应的IntermediateResult
        IntermediateResult ires = intermediateDataSets.get(edge.getSourceId());
        if (ires == null) {
            throw new JobException("Cannot connect this job graph to the previous graph. No previous intermediate result found for ID "
                    + edge.getSourceId());
        }
        
        // 将IntermediateResult加入到当前ExecutionJobVertex的输入中。
        this.inputs.add(ires);
        
        // 为IntermediateResult注册consumer
        // consumerIndex跟IntermediateResult的出度相关
        int consumerIndex = ires.registerConsumer();
        
        for (int i = 0; i < parallelism; i++) {
            ExecutionVertex ev = taskVertices[i];
            // 将ExecutionVertex与IntermediateResult关联起来
            ev.connectSource(num, ires, edge, consumerIndex);
        }
    }

看下ExecutionVertex.connectSource方法代码:

    public void connectSource(int inputNumber, IntermediateResult source, JobEdge edge, int consumerNumber) {
 // 只有forward的方式的情况下,pattern才是POINTWISE的,否则均为ALL_TO_ALL
    final DistributionPattern pattern = edge.getDistributionPattern();
    final IntermediateResultPartition[] sourcePartitions = source.getPartitions();

    ExecutionEdge[] edges;

    switch (pattern) {
        case POINTWISE:
            edges = connectPointwise(sourcePartitions, inputNumber);
            break;

        case ALL_TO_ALL:
            edges = connectAllToAll(sourcePartitions, inputNumber);
            break;

        default:
            throw new RuntimeException("Unrecognized distribution pattern.");

    }

    this.inputEdges[inputNumber] = edges;

    // 之前已经为IntermediateResult添加了consumer,这里为IntermediateResultPartition添加consumer,即关联到ExecutionEdge上
    for (ExecutionEdge ee : edges) {
        ee.getSource().addConsumer(ee, consumerNumber);
    }
}

connectAllToAll方法:

        ExecutionEdge[] edges = new ExecutionEdge[sourcePartitions.length];
    for (int i = 0; i < sourcePartitions.length; i++) {
        IntermediateResultPartition irp = sourcePartitions[i];
        edges[i] = new ExecutionEdge(irp, this, inputNumber);
    }

    return edges;

看这个方法之前,需要知道,ExecutionVertex的inputEdges变量,是一个二维数据。它表示了这个ExecutionVertex上每一个input所包含的ExecutionEdge列表。

即,如果ExecutionVertex有两个不同的输入:输入A和B。其中输入A的partition=1, 输入B的partition=8,那么这个二维数组inputEdges如下(为简短,以irp代替IntermediateResultPartition)

[ ExecutionEdge[ A.irp[0]] ]
[ ExecutionEdge[ B.irp[0], B.irp[1], ..., B.irp[7] ]

所以上面的代码就很容易理解了。

到这里为止,ExecutionJobGraph就创建完成了。接下来看下这个ExecutionGraph是如何转化成Task并开始执行的。


Task调度和执行

接下来我们以最简单的mini cluster为例讲解一下Task如何被调度和执行。

简单略过client端job的提交和StreamGraph到JobGraph的翻译,以及上面ExecutionGraph的翻译。

提交后的job的流通过程大致如下:

env.execute('<job name>')
  --> MiniCluster.runJobBlocking(jobGraph)
  --> MiniClusterDispatcher.runJobBlocking(jobGraph)
  --> MiniClusterDispatcher.startJobRunners
    --> JobManagerRunner.start
    --> JobMaster.<init> (build ExecutionGraph)

创建完JobMaster之后,JobMaster就会进行leader election,得到leader之后,会回调grantLeadership方法,从而调用jobManager.start(leaderSessionID);开始运行job。

JobMaster.start 
    --> JobMaster.startJobExecution(这里还没开始执行呢..)
    --> resourceManagerLeaderRetriever.start(new ResourceManagerLeaderListener());    

重点是在下面这行,获取到resource manage之后,就会回调ResourceManagerLeaderListener.notifyLeaderAddress,整个调用流如下:

ResourceManagerLeaderListener.notifyLeaderAddress
    --> JobMaster.notifyOfNewResourceManagerLeader
    --> ResourceManagerConnection.start
    --> ResourceManagerConnection.onRegistrationSuccess(callback,由flink rpc框架发送并回调)
    --> JobMaster.onResourceManagerRegistrationSuccess

然后终于来到了最核心的调度代码,在JobMaster.onResourceManagerRegistrationSuccess方法中:

    executionContext.execute(new Runnable() {
        @Override
        public void run() {
            try {
                executionGraph.restoreExternalCheckpointedStore();
                executionGraph.setQueuedSchedulingAllowed(true);
                executionGraph.scheduleForExecution(slotPool.getSlotProvider());
            }
            catch (Throwable t) {
                executionGraph.fail(t);
            }
        }
    });

ExecutionGraph.scheduleForExecution --> ExecutionGraph.scheduleEager

这个方法会计算所有的ExecutionVertex总数,并为每个ExecutionVertex分配一个SimpleSlot(暂时不考虑slot sharing的情况),然后封装成ExecutionAndSlot,顾名思义,即ExecutionVertex + Slot(更为贴切地说,应该是ExecutionAttempt + Slot)。

然后调用execAndSlot.executionAttempt.deployToSlot(slot);进行deploy,即Execution.deployToSlot

这个方法先会进行一系列状态迁移和检查,然后进行deploy,比较核心的代码如下:

        final TaskDeploymentDescriptor deployment = vertex.createDeploymentDescriptor(
            attemptId,
            slot,
            taskState,
            attemptNumber);
    // register this execution at the execution graph, to receive call backs
    vertex.getExecutionGraph().registerExecution(this);
        
    final TaskManagerGateway taskManagerGateway = slot.getTaskManagerGateway();        final Future<Acknowledge> submitResultFuture = taskManagerGateway.submitTask(deployment, timeout);

ExecutionVertex.createDeploymentDescriptor方法中,包含了从Execution Graph到真正物理执行图的转换。如将IntermediateResultPartition转化成ResultPartition,ExecutionEdge转成InputChannelDeploymentDescriptor(最终会在执行时转化成InputGate)。

最后通过RPC方法提交task,实际会调用到TaskExecutor.submitTask方法中。
这个方法会创建真正的Task,然后调用task.startTaskThread();开始task的执行。

在Task构造函数中,会根据输入的参数,创建InputGate, ResultPartition, ResultPartitionWriter等。

startTaskThread方法,则会执行executingThread.start,从而调用Task.run方法。
它的最核心的代码如下:

     // ...
    // now load the task's invokable code
    invokable = loadAndInstantiateInvokable(userCodeClassLoader, nameOfInvokableClass);

  // ...
  invokable.setEnvironment(env);
  
  // ...
  this.invokable = invokable;
  invokable.invoke();
  
  // task finishes or fails, do cleanup
  // ...

这里的invokable即为operator对象实例,通过反射创建。具体地,即为OneInputStreamTask,或者SourceStreamTask等。这个nameOfInvokableClass是哪里生成的呢?其实早在生成StreamGraph的时候,这就已经确定了,见StreamGraph.addOperator方法:

        if (operatorObject instanceof StoppableStreamSource) {
            addNode(vertexID, slotSharingGroup, StoppableSourceStreamTask.class, operatorObject, operatorName);
        } else if (operatorObject instanceof StreamSource) {
            addNode(vertexID, slotSharingGroup, SourceStreamTask.class, operatorObject, operatorName);
        } else {
            addNode(vertexID, slotSharingGroup, OneInputStreamTask.class, operatorObject, operatorName);
        }

这里的OneInputStreamTask.class即为生成的StreamNode的vertexClass。这个值会一直传递,当StreamGraph被转化成JobGraph的时候,这个值会被传递到JobVertex的invokableClass。然后当JobGraph被转成ExecutionGraph的时候,这个值被传入到ExecutionJobVertex.TaskInformation.invokableClassName中,一直传到Task中。

那么用户真正写的逻辑代码在哪里呢?比如word count中的Tokenizer,去了哪里呢?
OneInputStreamTask的基类StreamTask,包含了headOperator和operatorChain。当我们调用dataStream.flatMap(new Tokenizer())的时候,会生成一个StreamFlatMap的operator,这个operator是一个AbstractUdfStreamOperator,而用户的代码new Tokenizer,即为它的userFunction。

所以再串回来,以OneInputStreamTask为例,Task的核心执行代码即为OneInputStreamTask.invoke方法,它会调用StreamTask.run方法,这是个抽象方法,最终会调用其派生类的run方法,即OneInputStreamTask, SourceStreamTask等。

OneInputStreamTask的run方法代码如下:

    final OneInputStreamOperator operator = this.headOperator;
    final StreamInputProcessor inputProcessor = this.inputProcessor;
    final Object lock = getCheckpointLock();
while (running && inputProcessor.processInput(operator, lock)) {
    // all the work happens in the "processInput" method
}

就是一直不停地循环调用inputProcessor.processInput(operator, lock)方法,即StreamInputProcessor.processInput方法:

    public boolean processInput(OneInputStreamOperator streamOperator, final Object lock) throws Exception {
     // ...
    while (true) {
        if (currentRecordDeserializer != null) {
       // ...
       
            if (result.isFullRecord()) {
                StreamElement recordOrMark = deserializationDelegate.getInstance();
                
          // 处理watermark,则框架处理
                if (recordOrMark.isWatermark()) {
                   // watermark处理逻辑
                   // ...
                    continue;
                } else if(recordOrMark.isLatencyMarker()) {
                    // 处理latency mark,也是由框架处理
                    synchronized (lock) {
                        streamOperator.processLatencyMarker(recordOrMark.asLatencyMarker());
                    }
                    continue;
                } else {
                    // ***** 这里是真正的用户逻辑代码 *****
                    StreamRecord<IN> record = recordOrMark.asRecord();
                    synchronized (lock) {
                        numRecordsIn.inc();
                        streamOperator.setKeyContextElement1(record);
                        streamOperator.processElement(record);
                    }
                    return true;
                }
            }
        }

    // 其他处理逻辑
    // ...
    }
}

上面的代码中,streamOperator.processElement(record);才是真正处理用户逻辑的代码,以StreamFlatMap为例,即为它的processElement方法:

    public void processElement(StreamRecord element) throws Exception {
        collector.setTimestamp(element);
        userFunction.flatMap(element.getValue(), collector);
    }

这样,整个调度和执行逻辑就全部串起来啦。

你可能感兴趣的:(Flink深度解析,大数据成神之路,Flink从入门到实践)