- LLM 词汇表
落难Coder
LLMsNLP大语言模型大模型llama人工智能
Contextwindow“上下文窗口”是指语言模型在生成新文本时能够回溯和参考的文本量。这不同于语言模型训练时所使用的大量数据集,而是代表了模型的“工作记忆”。较大的上下文窗口可以让模型理解和响应更复杂和更长的提示,而较小的上下文窗口可能会限制模型处理较长提示或在长时间对话中保持连贯性的能力。Fine-tuning微调是使用额外的数据进一步训练预训练语言模型的过程。这使得模型开始表示和模仿微调数
- 【有啥问啥】刷爆各大榜单的Reflection 70B模型背后的错误自我纠正(Reflection-Tuning)技术解析:一种革新AI模型的方法
Chauvin912
大模型行业调研人工智能算法
刷爆各大榜单的Reflection70B模型背后的错误自我纠正(Reflection-Tuning)技术解析:一种革新AI模型的方法在快速发展的AI领域,尤其是大型语言模型(LLM)的竞争中,错误自我纠正技术(Reflection-Tuning)正逐步成为提升模型性能的关键突破。该技术通过赋予模型自我检测和纠正错误的能力,显著提高了输出的准确性和可靠性。本文将深入解析Reflection-Tunn
- 大模型多机多卡脚本实例 - 增量预训练 -accelerate和deepspeed命令多机多卡训练有什么不同
AI生成曾小健
大模型/增量预训练CPT深度学习python机器学习
第一步,同步权重ls-l/data/xxx/gpu008/MoeRemake/train/etuning/LLaMA-Factory2/models/xxx-Base-10B-200k-Llama第二步,同步环境:./scp_batch.sh"/data/xxx/miniconda3/envs/etuning4/""/data/vayu/miniconda3/envs/etuning4/"gpu0
- 超越传统:Reflection 70B如何革新AI语言处理
黑金IT
人工智能AI编程
Reflection70B:AI语言模型的新里程碑AI领域迎来了革命性的变革,HyperWrite公司推出的开源AI大模型Reflection70B,以其卓越的性能在多个基准测试中超越了GPT-4o和Llama3.1。这款基于Meta的Llama3.170BInstruct构建的模型,采用了先进的“Reflection-Tuning”技术,能够在最终确定回答前检测并纠正自身的错误,显著提高了输出的
- mysql5.7 myisam 优化_MySQL5.7优化配置参数
weixin_39866974
mysql5.7myisam优化
#Otherdefaulttuningvalues#MySQLServerInstanceConfigurationFile#----------------------------------------------------------------------#GeneratedbytheMySQLServerInstanceConfigurationWizard###Installatio
- 大模型推理框架 RTP-LLM 架构解析
阿里技术
架构LLM推理阿里巴巴RPT
RTP-LLM是阿里巴巴智能引擎团队推出的大模型推理框架,支持了包括淘宝、天猫、闲鱼、菜鸟、高德、饿了么、AE、Lazada等多个业务的大模型推理场景。RTP-LLM与当前广泛使用的多种主流模型兼容,使用高性能的CUDAkernel,包括PagedAttention、FlashAttention、FlashDecoding等,支持多模态、LoRA、P-Tuning、以及WeightOnly动态量化
- LLM系列(3):探索大模型RLHF优化之道:DeepSpeed-Chat超快速入门,对齐训练精度提升一步到位
汀、人工智能
LLM工业级落地实践人工智能promptLLM自然语言处理大模型RLHFDeepSpeed
LLM系列(3):探索大模型RLHF优化之道:DeepSpeed-Chat超快速入门,对齐训练精度提升一步到位随着ChatGPT的惊艳表现,各类大模型产品如雨后春笋丛出不穷。作为有一定算法能力的同学一定会想是否可以自己在有限的物理条件下去定制化自己的大模型。学术界对此也进行了一定的研究,如PromptTuning的技术等(不调试原始大模型,只调试相关的Prompt)。最近微软做了一个Deepspe
- 百篇论文博文导航AI工程之路:FT、KG、RAG与Agent技术全方位探索
汀、人工智能
AIAgent人工智能深度学习机器学习自然语言处理大模型AgentRAG
百篇论文博文导航AI工程之路:FT、KG、RAG与Agent技术全方位探索1.FTScalingDowntoScaleUp:AGuidetoParameter-EfficientFine-Tuning:https://arxiv.org/abs/2303.15647TowardsaUnifiedViewofParameter-EfficientTransferLearning:https://ar
- 【大模型】Agent基础知识
idiotyi
大模型人工智能自然语言处理
目录1.基本框架2.常见推理模式2.1ReAct:SynergizingReasoningandActinginLanguageModels2.2Reflection2.3LATS:LanguageAgentsTreeSearch3.微调3.1全模型微调(FullModelFine-Tuning)3.2冻结部分层微调(Layer-wiseFine-Tuning)3.3适配器(Adapters)3.
- 深度解析:大模型微调的原理、应用与实践
longfei.li
人工智能神经网络
引言最近在公司落地AI产品的过程中,与团队小伙伴深入探讨和测试了大模型微调,同时也跟多个业内专家进行了交流和学习。相信很多人在实际落地大模型应用的时候都会有个疑问:到底要不要做微调模型?我的结论是在实际落地的过程中绝大多数场景是不需要做的,所以今天主要跟大家分享一下什么是Fine-tuning、Fine-tuning的原理以及Fine-tuning的应用,以帮助大家在工作中更好的理解大模型微调。什
- CLIP-Adapter: Better Vision-Language Models with Feature Adapters
Tsukinousag
对比语言图像预训练(CLIP)虽然prompt-tuning用于textualinputs,但是建议CLIPAdapter在视觉或语言分支上使用功能适配器进行fine-tuneCLIPAdapter采用了一个额外的瓶颈层来学习新的特征,并将剩余的特征与原始的预训练特征进行混合。为了更好地适应vision语言模型,使用功能适配器,而不是快速调整1.ClassifierWeightGeneration
- MasaCtrl:Tuning-free mutual self-attention control for consistent image synthesis and editing
Kun Li
图像视频生成大模型stablediffusion
https://github.com/TencentARC/MasaCtrl/issues/13https://github.com/TencentARC/MasaCtrl/issues/13QuestionaboutMask·Issue#31·TencentARC/MasaCtrl·GitHub
- Code Llama: Open Foundation Models for Code论文阅读
yang_daxia
大模型llamacodellama
整体介绍CodeLlama发布了3款模型,包括基础模型、Python专有模型和指令跟随模型,参数量分别为7B、13B、34B和70B。这些模型在长达16ktokens的序列上训练。都是基于Llama2。作者针对infilling(FIM)、长上下文、指令专门做了微调long-contextfine-tuning(LCFT).codellama细节CodeLlama模型家族初始化:所有CodeLla
- 大模型18:微调大模型方法PEFT(LoRA等) — 训练 “ChatGLM2“ 项目
bluewelkin
大模型
微调大模型的方法之一是PEFT(Parameter-EfficientFine-Tuning),其中包括LoRA(Low-RankAdaptation)等技术。PEFT方法能够在不显著增加计算资源消耗的情况下,微调大模型,从而适应特定任务。这种方法特别适用于像“ChatGLM2”这样的预训练大模型。什么是PEFT(Parameter-EfficientFine-Tuning)?PEFT是一种优化微
- 大模型19:微调大模型方法
bluewelkin
大模型
有监督微调(SFT)、奖励模型(RM)训练,以及基于人类反馈的强化学习(RLHF)训练1.有监督微调(SFT-SupervisedFine-Tuning)数据处理数据收集:首先,需要收集大量的对话数据。这些数据通常包括人工标注的问答对,或者从已有的高质量对话系统中获取的数据集。数据预处理:对收集的数据进行清洗、标注和格式化。预处理包括移除噪音数据、分词、生成模型输入输出格式等。模型训练模型初始化:
- 大模型微调方法总结:LoRA、Adapter、Prefix-tuning、P-tuning、Prompt-tuning
百度_开发者中心
prompt人工智能大模型
随着深度学习技术的不断发展,大型预训练模型已成为许多任务的重要工具。然而,微调(finetuning)这些大模型以适应特定任务是一个复杂且计算密集型的过程。本文将重点介绍五种不同的微调方法:LoRA、Adapter、Prefix-tuning、P-tuning和Prompt-tuning,并对它们进行总结。LoRA(LearnedRepresentationsforFinetuning)LoRA是
- Prompt-Tuning:大模型微调技术
百度_开发者中心
prompt自然语言处理大模型
随着深度学习技术的不断发展,大模型(如GPT、BERT等)在各种自然语言处理(NLP)任务中取得了显著的成功。然而,训练和部署大模型需要大量的计算资源和时间,这限制了其在一些资源有限场景中的应用。为了解决这个问题,研究人员提出了各种大模型微调技术,以减少模型的大小和计算复杂度,同时保持模型的性能。本文将重点介绍一些常见的大模型微调技术,包括Adapter-Tuning、Prefix-Tuning、
- 大模型微调技术(Adapter-Tuning、Prefix-Tuning、Prompt-Tuning(P-Tuning)、P-Tuning v2、LoRA)_adapter微调 p tuning
Cc不爱吃洋葱
prompt
2022年11月30日,ChatGPT发布至今,国内外不断涌现出了不少大模型,呈现“百模大战”的景象,比如ChatGLM-6B、LLAMA、Alpaca等模型及在此模型基础上进一步开发的特定领域的大模型。今年3月15日,GPT-4发布后,也出现了一些多模态的大模型,比如百度的文心一言、讯飞星火认知大模型等等。要想训练一个针对特定领域的大模型,如果采用全量参数微调(FullParameterFutu
- eclipse java 性能分析工具_性能分析工具VisualVM for eclipse安装过程总结
白鹡鸰
eclipsejava性能分析工具
JavaVisualVMJavaVisualVMisatoolthatprovidesavisualinterfaceforviewingdetailedinformationaboutJavaapplicationswhiletheyarerunningonaJavaVirtualMachine(JVM),andfortroubleshootingandprofilingtheseapplica
- Rocksdb Tuning
MOONICK
数据库
Rocksdb配置选项尤其繁多,想要获得真正的高性能,需要进行详细的调优,这是项复杂的工作,需要在实践中积累经验:https://www.jianshu.com/p/8e0018b6a8b6https://cloud.tencent.com/developer/article/2329992调优RocksDB通常就是在三个amplification之间做取舍:Writeamplification-
- 大模型应用中什么是SFT(监督微调)?
Chauvin912
大模型语言模型深度学习算法
大模型应用中什么是SFT(监督微调)?一、SFT的基本概念监督微调(SupervisedFine-Tuning,SFT)是对已经预训练的模型进行特定任务的训练,以提高其在该任务上的表现。预训练模型通常在大量通用数据上进行训练,学到广泛的语言知识和特征。在SFT过程中,利用特定任务的数据,对模型进行进一步调整,使其更适合该任务。二、SFT的原理SFT的过程可以分为以下几个步骤:预训练模型:在大规模通
- AI推介-大语言模型LLMs论文速览(arXiv方向):2024.02.20-2024.02.25
小小帅AIGC
LLMs论文时报人工智能语言模型深度学习LLM大语言模型论文推送
论文目录~1.Zero-shotcross-lingualtransferininstructiontuningoflargelanguagemodel2.ScalingEfficientLLMs3.LLM-DA:DataAugmentationviaLargeLanguageModelsforFew-ShotNamedEntityRecognition4.WhoseLLMisitAnyway?L
- AI推介-大语言模型LLMs论文速览(arXiv方向):2024.02.25-2024.03.01
小小帅AIGC
LLMs论文时报人工智能语言模型自然语言处理LLM大语言模型深度学习论文推送
论文目录~1.ArithmeticControlofLLMsforDiverseUserPreferences:DirectionalPreferenceAlignmentwithMulti-ObjectiveRewards2.KeepingLLMsAlignedAfterFine-tuning:TheCrucialRoleofPromptTemplates3.Meta-TaskPrompting
- 大模型训练——PEFT与LORA介绍
MarkHD
人工智能深度学习机器学习
大模型训练中的PEFT(Parameter-EfficientFine-Tuning)与LoRA(Low-RankAdaptation)是两种重要的技术,它们在大型预训练模型的应用中发挥着重要作用。首先,让我们来了解一下PEFT。PEFT是一种参数高效的微调技术,由Huggingface发布。这种方法的核心思想是仅微调少量(额外)模型参数,同时冻结预训练LLM的大部分参数。这样做的好处是大大降低了
- 微前端qiankun从头写一个demo,包含主微应用、微微应用通信用例
Yoyo_Yan
前端qiankun微前端qiankunvue
文章目录qiankun微前端demo说明1.路由说明:1.1hash路由:1.2history路由:路由切换2.LifeCycles:3.父子通讯3.1主应用与微应用的通信3.2微应用之间的通信4.手动加载微应用5.css隔离6.js隔离TroubleShootingqiankun微前端demo说明demo传送门启动:$npmstart项目文件说明见ProjectTree.md。通过npm-run
- 学习笔记:使用 Amazon Bedrock 进行图像生成
AmazonBedrock全新发布在2023年的亚马逊云科技re:Invent全球云计算大会上,最令人瞩目的一项更新莫过于AmazonBedrock的全新升级。亚马逊云科技此次为其大模型托管服务引入了Fine-tuning、Agents、KnowledgeBases和Guardrails等一系列创新功能。这些功能的加入意味着客户现在能以更加高效、智能和安全的方式构建各种应用,标志着亚马逊云科技在推
- 预训练和微调在迁移学习中的作用
一条小小yu
迁移学习人工智能机器学习
在机器学习和深度学习中,"pre-training"(预训练)和"fine-tuning"(微调)是两个常见且重要的概念,它们通常在迁移学习场景中使用,以提高模型在特定任务上的性能。预训练(Pre-training)预训练是指在一个大型且通常与目标任务相关但不完全相同的数据集上训练模型的过程。这个阶段的目的是让模型学习到一些通用的特征或知识,这些特征或知识可以帮助模型在后续的特定任务上表现更好。预
- 大模型微调大杂烩知识总结
lichunericli
LLM人工智能语言模型
1.前缀微调(Prefix-Tuning)前缀微调是一种针对预训练模型的微调方法,通过在模型输入前添加特定任务相关的连续前缀表示,从而引导模型生成适应特定任务的输出。在微调过程中,只更新前缀表示的参数,而预训练模型的参数保持不变。微调方法:首先,为每个任务设计一个可学习的前缀表示。然后,将这个前缀表示与输入序列进行拼接,输入到预训练模型中。最后,通过优化前缀表示的参数,使得模型能够生成适应特定任务
- Prompt Tuning:深度解读一种新的微调范式
lichunericli
LLM人工智能语言模型prompt
阅读该博客,您将系统地掌握如下知识点:什么是预训练语言模型?什么是prompt?为什么要引入prompt?相比传统fine-tuning有什么优势?自20年底开始,prompt的发展历程,哪些经典的代表方法?面向不同种类NLP任务,prompt如何选择和设计?面向超大规模模型,如何借助prompt进行参数有效性训练?面向GPT3,什么是In-ContextLearning?什么是Chain-Of-
- ACK Timeout 相关论文
小超超爱超超
论文中提到了ACKTimeout《AReal-TimeUpdatingAlgorithmofRTS-CTSThresholdtoEnhanceEDCAMACPerformanceinIEEE802.11eWirelessLANs》Timeout论文中《RTSThresholdSelf-TuningAlgorithmBasedonDelayAnalysison802.11DCF》提到冲突时间:
- eclipse maven
IXHONG
eclipse
eclipse中使用maven插件的时候,运行run as maven build的时候报错
-Dmaven.multiModuleProjectDirectory system propery is not set. Check $M2_HOME environment variable and mvn script match.
可以设一个环境变量M2_HOME指
- timer cancel方法的一个小实例
alleni123
多线程timer
package com.lj.timer;
import java.util.Date;
import java.util.Timer;
import java.util.TimerTask;
public class MyTimer extends TimerTask
{
private int a;
private Timer timer;
pub
- MySQL数据库在Linux下的安装
ducklsl
mysql
1.建好一个专门放置MySQL的目录
/mysql/db数据库目录
/mysql/data数据库数据文件目录
2.配置用户,添加专门的MySQL管理用户
>groupadd mysql ----添加用户组
>useradd -g mysql mysql ----在mysql用户组中添加一个mysql用户
3.配置,生成并安装MySQL
>cmake -D
- spring------>>cvc-elt.1: Cannot find the declaration of element
Array_06
springbean
将--------
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3
- maven发布第三方jar的一些问题
cugfy
maven
maven中发布 第三方jar到nexus仓库使用的是 deploy:deploy-file命令
有许多参数,具体可查看
http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.html
以下是一个例子:
mvn deploy:deploy-file -DgroupId=xpp3
- MYSQL下载及安装
357029540
mysql
好久没有去安装过MYSQL,今天自己在安装完MYSQL过后用navicat for mysql去厕测试链接的时候出现了10061的问题,因为的的MYSQL是最新版本为5.6.24,所以下载的文件夹里没有my.ini文件,所以在网上找了很多方法还是没有找到怎么解决问题,最后看到了一篇百度经验里有这个的介绍,按照其步骤也完成了安装,在这里给大家分享下这个链接的地址
- ios TableView cell的布局
张亚雄
tableview
cell.imageView.image = [UIImage imageNamed:[imageArray objectAtIndex:[indexPath row]]];
CGSize itemSize = CGSizeMake(60, 50);
&nbs
- Java编码转义
adminjun
java编码转义
import java.io.UnsupportedEncodingException;
/**
* 转换字符串的编码
*/
public class ChangeCharset {
/** 7位ASCII字符,也叫作ISO646-US、Unicode字符集的基本拉丁块 */
public static final Strin
- Tomcat 配置和spring
aijuans
spring
简介
Tomcat启动时,先找系统变量CATALINA_BASE,如果没有,则找CATALINA_HOME。然后找这个变量所指的目录下的conf文件夹,从中读取配置文件。最重要的配置文件:server.xml 。要配置tomcat,基本上了解server.xml,context.xml和web.xml。
Server.xml -- tomcat主
- Java打印当前目录下的所有子目录和文件
ayaoxinchao
递归File
其实这个没啥技术含量,大湿们不要操笑哦,只是做一个简单的记录,简单用了一下递归算法。
import java.io.File;
/**
* @author Perlin
* @date 2014-6-30
*/
public class PrintDirectory {
public static void printDirectory(File f
- linux安装mysql出现libs报冲突解决
BigBird2012
linux
linux安装mysql出现libs报冲突解决
安装mysql出现
file /usr/share/mysql/ukrainian/errmsg.sys from install of MySQL-server-5.5.33-1.linux2.6.i386 conflicts with file from package mysql-libs-5.1.61-4.el6.i686
- jedis连接池使用实例
bijian1013
redisjedis连接池jedis
实例代码:
package com.bijian.study;
import java.util.ArrayList;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoo
- 关于朋友
bingyingao
朋友兴趣爱好维持
成为朋友的必要条件:
志相同,道不合,可以成为朋友。譬如马云、周星驰一个是商人,一个是影星,可谓道不同,但都很有梦想,都要在各自领域里做到最好,当他们遇到一起,互相欣赏,可以畅谈两个小时。
志不同,道相合,也可以成为朋友。譬如有时候看到两个一个成绩很好每次考试争做第一,一个成绩很差的同学是好朋友。他们志向不相同,但他
- 【Spark七十九】Spark RDD API一
bit1129
spark
aggregate
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
//测试RDD的aggregate方法
object AggregateTest {
def main(args: Array[String]) {
val conf = new Spar
- ktap 0.1 released
bookjovi
kerneltracing
Dear,
I'm pleased to announce that ktap release v0.1, this is the first official
release of ktap project, it is expected that this release is not fully
functional or very stable and we welcome bu
- 能保存Properties文件注释的Properties工具类
BrokenDreams
properties
今天遇到一个小需求:由于java.util.Properties读取属性文件时会忽略注释,当写回去的时候,注释都没了。恰好一个项目中的配置文件会在部署后被某个Java程序修改一下,但修改了之后注释全没了,可能会给以后的参数调整带来困难。所以要解决这个问题。
&nb
- 读《研磨设计模式》-代码笔记-外观模式-Facade
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 百度百科的定义:
* Facade(外观)模式为子系统中的各类(或结构与方法)提供一个简明一致的界面,
* 隐藏子系统的复杂性,使子系统更加容易使用。他是为子系统中的一组接口所提供的一个一致的界面
*
* 可简单地
- After Effects教程收集
cherishLC
After Effects
1、中文入门
http://study.163.com/course/courseMain.htm?courseId=730009
2、videocopilot英文入门教程(中文字幕)
http://www.youku.com/playlist_show/id_17893193.html
英文原址:
http://www.videocopilot.net/basic/
素
- Linux Apache 安装过程
crabdave
apache
Linux Apache 安装过程
下载新版本:
apr-1.4.2.tar.gz(下载网站:http://apr.apache.org/download.cgi)
apr-util-1.3.9.tar.gz(下载网站:http://apr.apache.org/download.cgi)
httpd-2.2.15.tar.gz(下载网站:http://httpd.apac
- Shell学习 之 变量赋值和引用
daizj
shell变量引用赋值
本文转自:http://www.cnblogs.com/papam/articles/1548679.html
Shell编程中,使用变量无需事先声明,同时变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)
中间不能有空格,可以使用下划线(_)
不能使用标点符号
不能使用bash里的关键字(可用help命令查看保留关键字)
需要给变量赋值时,可以这么写:
- Java SE 第一讲(Java SE入门、JDK的下载与安装、第一个Java程序、Java程序的编译与执行)
dcj3sjt126com
javajdk
Java SE 第一讲:
Java SE:Java Standard Edition
Java ME: Java Mobile Edition
Java EE:Java Enterprise Edition
Java是由Sun公司推出的(今年初被Oracle公司收购)。
收购价格:74亿美金
J2SE、J2ME、J2EE
JDK:Java Development
- YII给用户登录加上验证码
dcj3sjt126com
yii
1、在SiteController中添加如下代码:
/**
* Declares class-based actions.
*/
public function actions() {
return array(
// captcha action renders the CAPTCHA image displ
- Lucene使用说明
dyy_gusi
Lucenesearch分词器
Lucene使用说明
1、lucene简介
1.1、什么是lucene
Lucene是一个全文搜索框架,而不是应用产品。因此它并不像baidu或者googleDesktop那种拿来就能用,它只是提供了一种工具让你能实现这些产品和功能。
1.2、lucene能做什么
要回答这个问题,先要了解lucene的本质。实际
- 学习编程并不难,做到以下几点即可!
gcq511120594
数据结构编程算法
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- Java面试十问之三:Java与C++内存回收机制的差别
HNUlanwei
javaC++finalize()堆栈内存回收
大家知道, Java 除了那 8 种基本类型以外,其他都是对象类型(又称为引用类型)的数据。 JVM 会把程序创建的对象存放在堆空间中,那什么又是堆空间呢?其实,堆( Heap)是一个运行时的数据存储区,从它可以分配大小各异的空间。一般,运行时的数据存储区有堆( Heap)和堆栈( Stack),所以要先看它们里面可以分配哪些类型的对象实体,然后才知道如何均衡使用这两种存储区。一般来说,栈中存放的
- 第二章 Nginx+Lua开发入门
jinnianshilongnian
nginxlua
Nginx入门
本文目的是学习Nginx+Lua开发,对于Nginx基本知识可以参考如下文章:
nginx启动、关闭、重启
http://www.cnblogs.com/derekchen/archive/2011/02/17/1957209.html
agentzh 的 Nginx 教程
http://openresty.org/download/agentzh-nginx-tutor
- MongoDB windows安装 基本命令
liyonghui160com
windows安装
安装目录:
D:\MongoDB\
新建目录
D:\MongoDB\data\db
4.启动进城:
cd D:\MongoDB\bin
mongod -dbpath D:\MongoDB\data\db
&n
- Linux下通过源码编译安装程序
pda158
linux
一、程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 库文件:就是通常我们见到的lib目录下的文件 配置文件:这个不必多说,都知道 帮助文档:通常是我们在linux下用man命令查看的命令的文档
二、linux下程序的存放目录 linux程序的存放目录大致有三个地方: /etc, /b
- WEB开发编程的职业生涯4个阶段
shw3588
编程Web工作生活
觉得自己什么都会
2007年从学校毕业,凭借自己原创的ASP毕业设计,以为自己很厉害似的,信心满满去东莞找工作,找面试成功率确实很高,只是工资不高,但依旧无法磨灭那过分的自信,那时候什么考勤系统、什么OA系统、什么ERP,什么都觉得有信心,这样的生涯大概持续了约一年。
根本不是自己想的那样
2008年开始接触很多工作相关的东西,发现太多东西自己根本不会,都需要去学,不管是asp还是js,
- 遭遇jsonp同域下变作post请求的坑
vb2005xu
jsonp同域post
今天迁移一个站点时遇到一个坑爹问题,同一个jsonp接口在跨域时都能调用成功,但是在同域下调用虽然成功,但是数据却有问题. 此处贴出我的后端代码片段
$mi_id = htmlspecialchars(trim($_GET['mi_id ']));
$mi_cv = htmlspecialchars(trim($_GET['mi_cv ']));
贴出我前端代码片段:
$.aj