题目传送门
求 ∑ni=1∑mj=1lcm(i,j) ∑ i = 1 n ∑ j = 1 m l c m ( i , j ) ,对 20101009 20101009 取模
不妨设n≤m.
∑ni=1∑mj=1lcm(i,j)
=∑ni=1∑mj=1ijgcd(i,j)
=\sum_{d=1}^{n}\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{ij}{d} [gcd(i,j)=d]
=\sum_{d=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} ijd [gcd(i,j)=1]
=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} ij[gcd(i,j)=1]
=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} ije(gcd(i,j))
=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} ij \sum_{k|gcd(i,j)} \mu(k)
=\sum_{d=1}^{n}d \sum_{k=1}^{\lfloor\frac{n}{d}\rfloor} \mu(k) \sum_{i=1}^{\lfloor\frac{n}{dk}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{dk}\rfloor} ijk^2
=\sum_{d=1}^{n}d \sum_{k=1}^{\lfloor\frac{n}{d}\rfloor} k^2\mu(k) \sum_{i=1}^{\lfloor\frac{n}{dk}\rfloor} i\sum_{j=1}^{\lfloor\frac{m}{dk}\rfloor} j
记sum(k)表示\sum_{i=1}^{k}i,即\frac{k(k+1)}{2}
=\sum_{d=1}^{n}d \sum_{k=1}^{\lfloor\frac{n}{d}\rfloor} k^2\mu(k) sum(\lfloor\frac{n}{dk}\rfloor)sum(\lfloor\frac{m}{dk}\rfloor)
枚举T=dk:
=\sum_{T=1}^{n}sum(\lfloor\frac{n}{T}\rfloor)sum(\lfloor\frac{m}{T}\rfloor)\sum_{d|T}d (\frac{T}{d})^2\mu(\frac{T}{d})
考虑到枚举d相当于枚举T/d:
=\sum_{T=1}^{n}sum(\lfloor\frac{n}{T}\rfloor)sum(\lfloor\frac{m}{T}\rfloor)\sum_{d|T}\frac{T}{d} (d)^2\mu(d)
=\sum_{T=1}^{n}sum(\lfloor\frac{n}{T}\rfloor)sum(\lfloor\frac{m}{T}\rfloor)\sum_{d|T} Td\mu(d)
=\sum_{T=1}^{n}sum(\lfloor\frac{n}{T}\rfloor)sum(\lfloor\frac{m}{T}\rfloor)T\sum_{d|T} d\mu(d)
记f(T)=\sum_{d|T} d\mu(d),这可以线性筛
如果p是i的一个质因子,那么f(ip)=f(i)(因为p加入不会产生新的有贡献的约数d)。否则这个p乘上之前的每一个约数d,使得\mu(pd)=-\mu(d),加入答案里,即f(ip)=f(i)-pf(i)=(1-p)f(i),注意到f(p)=1-p(根据定义),即f(ip)=f(i)f(p).
于是就可以愉快的数论分块+线性筛了
#include
#include
using namespace std;
const int MOD = 20101009;
const int MAXN = 1e7 + 10;
int n, m;
int pr[MAXN], tot;
int f[MAXN], sum[MAXN];
bool tag[MAXN];
void init(int n) {
tag[1] = true;
f[1] = sum[1] = 1;
for(int i = 2; i <= n; i ++) {
if(!tag[i]) {
pr[++ tot] = i;
f[i] = ((1 - i) % MOD + MOD) % MOD;
}
for(int j = 1; j <= tot && i * 1ll * pr[j] <= n; j ++) {
tag[i * pr[j]] = true;
if(i % pr[j] == 0) {
f[i * pr[j]] = f[i];
break ;
}
f[i * pr[j]] = f[i] * 1ll * f[pr[j]] % MOD;
}
}
for(int i = 2; i <= n; i ++) {
f[i] = (f[i - 1] + 1ll * f[i] * i % MOD) % MOD;
sum[i] = (sum[i - 1] + 1ll * i) % MOD;
}
}
int main() {
scanf("%d%d", &n, &m);
if(n > m) swap(n, m);
init(m);
int ans = 0;
for(int i = 1, j; i <= n; i = j + 1) {
j = min(n / (n / i), m / (m / i));
ans = (ans + ((( (f[j] - f[i-1]) % MOD + MOD ) % MOD) * 1ll \
* sum[n / i] % MOD * 1ll * sum[m / i] % MOD)) % MOD;
}
printf("%d\n", ans);
return 0;
}