- poj 1142 Smith Numbers(数论:欧拉函数变形)
殷华
数学/数论
给定一个数n找出大于n的最小smith数smith数定义如下:一个数n为smith数当且仅当它的所有质因子各位数之和等于n的所有位数之和且n不是素数那么给定一个n,我们就可以每次+1判断是否为smith数这道题唯一的难点就在于找到一个数的所有素数因子套用欧拉函数变形即可375ms代码如下:#include#include#defineLLlonglongLLn;intget_ans(LLn){in
- 探索约数:试除法,约数之和,最大公约数
Lostgreen
数据结构&算法算法最大公约数
引言约数(Divisor)是数论中的基本概念之一,指能够整除某个数的整数。约数在数学、计算机科学和密码学中有着广泛的应用。本文将详细介绍约数的相关知识,包括试除法求约数、最大公约数算法(如辗转相除法和更相减损术),并阐明这些算法的原理和步骤。1.试除法求约数1.1算法原理试除法是一种简单直观的求约数的方法。对于一个数nnn,如果ddd是nnn的约数,则nnn能被ddd整除。通过遍历1到n\sqrt
- ACM培训4
ZIZIZIZIZ()
算法笔记
学习总结--基础数论大多为模板一、GCD(最大公约数)①辗转相除法longlonggcd(longa,longb){longlongr;while(b!=0){r=a%b;a=b;b=r;}returna;}②扩展欧几里得算法intexgcd(inta,intb,int&x,int&y){if(b==0){x=1;y=0;returnaa;}intans=exgcd(b,a%b,x,y);intk
- 【数论】—— 素数
Tom_wsc
数论算法
素数定义因数只有111和这个数本身的数被称作素数。注意:111既不是素数也不是合数,222是最小的素数。两个关于素数的定理唯一分解定理对于任意大于111的整数xxx,都可以分解成若干个素数的乘积:x=p1a1×p2a2×p3a3×⋯×pnan(ai∈Z+)x=p_1^{a_1}\timesp_2^{a_2}\timesp_3^{a_3}\times\cdots\timesp_n^{a_n}(a_i
- 【运行别超时】最近小何去在我们学校的比赛中遇到一个有意思的题,答案做出来了,但运行总是超时。这怎么解决呢?来看看吧。
小浩~
c语言
题目内容如下:小C最近在研究数论,他发现质数有太多美妙的性质了,于是他想要统计一下一段区域里的数有多少是质数,请你编程帮他解决这个问题吧。输入格式:第一行一个正整数t,表示数据组数。(1≤t≤105)接下来t行,每行两个正整数l,r,表示区间的左右端点。(1≤l≤r≤106)输出格式:每组数据输出一个整数,表示闭区间[l,r]中的质数数量输入样例:21326输出样例:在这里给出相应的输出。例如:2
- 2025年日祭
JeremyHe1209
笔记
本文将同步发表于洛谷(暂无法访问)、CSDN与Github个人博客(暂未发布)本蒟自2025.2.8开始半停课。任务计划(站外题与专题)数了一下,通过人数比较高的题,也就是我准备补的题,刚好差不多100道题。于是……摆烂百题计划开始!(糖丸了)(2025.2.8)NetworkNetworkofSchoolsDP优化——矩阵数论——容斥、二项式反演DP优化——斜率优化数据结构——左偏树数据结构——
- 解析数论基础:第三十三章 零点分布(二)
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
解析数论基础:第三十三章零点分布(二)作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:解析数论、黎曼ζ函数、零点分布、素数定理、蒙哥马利猜想、配对相关函数、随机矩阵理论1.背景介绍1.1问题的由来解析数论是现代数学的重要分支,它利用复变函数论等分析学的方法研究数论问题。其中一个核心课题就是研究黎曼ζ函数的性质,特别是它的零点分布。这个问题不仅
- 【密码学基础】RSA加密算法
Mr.zwX
隐私计算及密码学基础密码学安全
1RSA介绍RSA是一种非对称加密算法,即加密和解密时用到的密钥不同。加密密钥是公钥,可以公开;解密密钥是私钥,必须保密保存。基于一个简单的数论事实:两个大质数相乘很容易,但想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,即公钥;而两个大质数组合成私钥。2密钥对的生成step1生成N(公钥和私钥的一部分)首先选取两个互为质数的数ppp和qqq(p≠q,gcd(p,q)=1p\n
- 数论问题79一一研究成果
李扩继
数据分析深度学习学习方法算法数学建模
(豆包智能搜索一一李扩继)李扩继是一位在数学研究尤其是哥德巴赫猜想研究领域有一定成果的中学老师,以下是关于他的具体介绍:①研究经历:2006年承担咸阳市教研室的立项课题《角谷猜想的研究》,虽未完成角谷猜想的证明,但在意外灵感下开始对哥德巴赫猜想展开持续性研究工作。②发表论文:研究哥德巴赫猜想发表了多篇文章,如2008年的《哥德巴赫猜想的证明》、2010年的《哥德巴赫猜想的“1+1”证明》、2017
- 【算法学习之路】4.简单数论(2)
零零时
算法学习之路算法学习数据结构笔记经验分享
简单数论(2)前言二.快速幂1.什么是快速幂2.前置知识2.1进制转化2.2短除法2.3普通转换法3.快速幂3.1原理3.2代码4.拓展4.1模运算法则4.2题目前言我会将一些常用的算法以及对应的题单给写完,形成一套完整的算法体系,以及大量的各个难度的题目,目前算法也写了几篇,滑动窗口的题单正在更新,其他的也会陆陆续续的更新,希望大家点赞收藏我会尽快更新的!!!二.快速幂1.什么是快速幂快速幂是一
- 数论问题77一一3x+1问题
李扩继
深度学习学习方法算法数学建模数据分析
3X+1问题,也被称为考拉兹猜想、角谷猜想等,是数学领域一个著名的未解决问题,以下是关于它的介绍:问题表述对于任意一个正整数X,如果X是奇数,则将其变为3X+1;如果X是偶数,则将其变为X/2。不断重复这个过程,最终是否无论初始值X是多少,都会经过有限次变换后最终得到1。例如,取X=5,它是奇数,进行3X+1操作得到3×5+1=16;16是偶数,进行X/2操作得到16÷2=8,接着8÷2=4,4÷
- 数论问题76一一容斥原理
李扩继
深度学习数学建模大数据学习方法算法
容斥原理是一种计数方法,用于计算多个集合的并集中元素的个数,以避免重复计算。以下是其基本内容及相关公式:两个集合的容斥原理若有集合A和集合B,那么A与B的并集中元素的个数等于A集合元素个数加上B集合元素个数,再减去A与B交集的元素个数,即|AUB|=|A|+|B|-|A∧B|。例如,一个班级中喜欢数学的有30人,喜欢语文的有25人,既喜欢数学又喜欢语文的有10人。那么喜欢数学或语文的人数为30+2
- 【数论】Acwing质数与约数
九年义务漏网鲨鱼
算法python算法数论质数约数
质数质数的判定(试除法)除了开方的数,其他因数都是成对出现的defis_prime(x):if(x<2)returnFalseforiinrange(2,int(x/i)+1):if(x%iW==0):returnFalsereturnTrue分解质因数defdivide(x):foriinrange(2,int(x/i)+1):if(x%i==0):s=0while(x%i==0):x//=is
- 数论(三)——约数(约数个数,约数和,公约数)
DearLife丶
#数学知识算法gcd约数欧几里德算法
目录试除法求约数求约数个数约数之和欧几里得算法试除法求约数试除法求一个数的所有约数,思路与判断质数的思路一样,优化的方法也是一样的,这里就不再赘述,没有看过我之前关于质数的博客可以点这里。从小到大枚举所有约数,但是我们只需要枚举每一对儿中较小的一个就可以了。时间复杂度:O(sqrt(n))vectorget_divisors(intn){vectorres;//vector数组存储一个数的所有约数
- 数论问题65一一整数的乘法分拆
李扩继
数据分析深度学习学习方法数学建模算法
整数的乘法分拆实质就是整数的乘法因子数分解。如18=2x9=6x3=2x3x3。整数的乘法分拆与加法分拆有密切的关联,最终用加法分拆来表示。如,a为质数,a^n的乘法分拆就是指数n的加法分拆。整数的乘法分拆相当复杂,如果弄不懂乘法分拆的实质,那么,进行乘法分拆会相当困难。首先,对于一个正整数n要进行质因数幂分解,如18=2x3^2。其次,设定抽屉,然后给抽屉中放置元素,分类进行。用f(n)表示对正
- lisp不是函授型语言_LISP语言
sunlee0520
lisp不是函授型语言
[拼音]:LISPyuyan[外文]:LISP为非数值符号运算而设计的表处理语言。LISP是英文LISTPROCESSING(表处理)的缩写。LISP语言是1960年J.麦卡锡在递归函数论基础上首先设计出来的。LISP语言的形式化程度高,表达力强,适合于描述各种知识和编写问题求解的程序,因此一直是用来研究人工智能的一种基本语言。自然语言中词可以认为是能单独用来构成句子的最小单元,由词可以构成词组,
- 数论问题61一一各种进位制
李扩继
深度学习数学建模大数据学习方法算法
10进位制是普遍使用的数进位制,二进位制是计算机采用的进位制。还有三进位制,四进位制,…等等。那一种进位制都能转化为10进位制。下面介绍这种方法。①10进位制的表示(口诀:逢10进1)如8X1000+7X100+5x10+3=8753。②2进位制的表示(口诀:逢2进1)如2进位制数101101(2)转化为10进制101101=1x2^5+0x2^4+1x2^3+1x2^2+0x2+1=32+8+4
- 求质因数个数
程序猿小假
算法
什么是质因数?质因数:在数论里是指能整除给定正整数的质数。也就是说,如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。例如,对于数字12,它的因数有1、2、3、4、6、12。其中2和3是质数,所以12的质因数是2和3。如何求一个数有多少个质因数呢?举一个例子,方便大家理解~例:求2024有几个质因数?1.从最小的质数开始尝试分解最小的质数是2,我们先看2024能否被2整除。2024/2=
- 计算机密码体制分为哪两类,密码体制的分类.ppt
约会师老马
计算机密码体制分为哪两类
密码体制的分类.ppt密码学基本理论现代密码学起始于20世纪50年代,1949年Shannon的《TheCommunicationTheoryofSecretSystems》奠定了现代密码学的数学理论基础。密码体制分类(1)换位与代替密码体制序列与分组密码体制对称与非对称密钥密码体制数学理论数论信息论复杂度理论数论--数学皇后素数互素模运算,模逆元同余方程组,孙子问题,中国剩余定理因子分解素数梅森
- 致良知之寄诸用明书
BonSun
众所周知,当今社会,父母和社会、学校对学生的期望往往是唯分数论,包括每个人对成功的理解也往往是功名利禄,忽视了最基本的学问。文中提到,花之千叶者无实,为其华美太发露耳。人只有沉下心来,韬光养晦,才能拥有真正的学问和本领。
- [bzoj1139]Wie
weixin_30437481
1139:[POI2009]WieTimeLimit:10SecMemoryLimit:259MBDescriptionByteasarhasbecomeahexer-aconquerorofmonsters.CurrentlyheistoreturntohishometownByteburg.Thewayhome,alas,leadsthroughalandfullofbeasts.Fortun
- BZOJ 五月胡乱补题
nike0good
其他屯题bzoj博客补档
旧博客搬运部分格式还没来得及改T_T【BZOJ4806:炮】同BZOJ1801【BZOJ3242:[Noi2013]快餐店】树形dp,要么最远点在同一颗树上(dp),要么在不同树上,此时答案=去掉任何一条边后形成的树的答案的最小值,我们枚举去掉的那条边。由于答案=s[i]-s[j]+dis[i]+dis[j],i,j可以分开考虑,也可以用线段树解决。【BZOJ4878:[Lydsy2017年5月月
- Python【math数学函数】
Alan_Lowe
#Pythonpython
Python【math数学函数】文章目录Python【math数学函数】数论与表示函数1.ceil()和floor()2.comb()3.copysign()4.fabs()5.factorial()6.gcd()7.lcm()幂函数与对数函数1.exp()和math.e和pow()2.log()和log2()和log10()3.sqrt(x)三角函数1.asin、acos()、atan()2.s
- python 实现eulers totient欧拉方程算法
luthane
算法python开发语言
eulerstotient欧拉方程算法介绍欧拉函数(Euler’sTotientFunction),通常表示为(),是一个与正整数相关的函数,它表示小于或等于的正整数中与互质的数的数目。欧拉函数在数论和密码学中有广泛的应用。欧拉函数的性质1.**对于质数,有φ(p)=p−1∗∗φ(p)=p−1^{**}φ(p)=p−1∗∗。2.**如果是质数的次幂,即n=pkn=p^kn=pk,则φ(n)=pk−
- BZOJ-2521: [Shoi2010]最小生成树(最小割)(本蒟蒻的BZOJ第401 AC撒花~)
AmadeusChan
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2521挺神奇的一个最小割模型,如果要使得该边一定在MST上,那么要保证该边连接的两个连通块之间不存在其他边权小于等于它的边,那么自然就最小割啦。代码:#include#include#includeusingnamespacestd;#definemaxn1010#definemaxv1010#
- 算法设计与分析学习(6)——数论
罗塞菈桔梨萝柚
算法学习算法线性代数
数论整除基本概念若aaa和bbb为整数,且a≠0a≠0a=0若存在整数qqq使得b=aqb=aqb=aq,那么就说aaa可以整除bbb或是bbb被aaa整除,记作a∣ba|ba∣b。aaa也被称为bbb的约数,bbb也被称为a的倍数。若bbb不能被aaa整除,则记作a∤ba\not{|}ba∣b。整数p≠0,±1p≠0,±1p=0,±1,且除了±1,±p±1,±p±1,±p外没有其他的约数
- 数论——欧几里得算法
NarutoTime
数论算法c++数据结构c语言
1.欧几里得简介 欧几里得(希腊文:Ευκλειδης,约公元前330年—公元前275年),古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,在书中他提出五大公设。欧几里得的《几何原本》被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。2.欧几里得算法欧几里得算法用于:求解a和b的最大公约数。最大公约数英文为:Gre
- 数论——扩展欧几里得算法
NOI_yzk
欧几里得&拓展欧几里得(Euclid&Extend-Euclid)欧几里得算法(Euclid)背景:欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。——百度百科代码:递推的代码是相当的简洁:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}分析:方法说了是辗转相除法,自然没有什么好介绍的了。。Fresh肯定会觉得这样递归下去会不会爆栈?实际上在
- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- Collatz 猜想和 Python
不连续小姐
PythonDay4:CollatzConjecture原来总有学生问我,微积分有什么用啊,我说如果微积分学好了,也许抽象代数和数论就能学好,那最后就能像AndrewWiles一样上人物年度杂志的封面了.(AndrewWiles证明了Fermat'sLastTheorem,费玛大定理).[captionid="attachment_1466"align="alignnone"width="300"
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu