基于51单片机的智能窗帘仿真原理图程序设计

仿真图:

原理图:
基于51单片机的智能窗帘仿真原理图程序设计_第1张图片
系统概述
整个系统以STC89C52单片机为核心器件,配合电阻电容晶振等器件,构成单片机的最小系统。其它个模块围绕着单片机最小系统展开。其中包括,显示设备使用1602液晶,可以同时显示年、月、日、时、分、控制模式、光照强度等基本信息;时钟模块采用DS1302芯片,初始化之后,就会开始运行计算时间,单片机只需进行时间信息的读取即可;光照检测电路采用光敏电阻和模数转换芯片ADC0832,将模拟量数字化并显示出来;窗帘使用步进电机进行代替模拟,同时配有一个LED灯用来指示窗帘当前的开关状态;本设计还有5个按键作为操作输入设备,可以对当前时间进行调整设置和设置窗帘开关时间和光控阈值等;最后是供电采用常用的USB 5V进行供电。
基于51单片机的智能窗帘仿真原理图程序设计_第2张图片

时钟模块
3.4.1 DS1302简介
DS1302是由美国DALLAS公司推出的具有涓细电流充电能力的低功耗实时时钟芯片。现在流行的串行时钟电路很多,如DS1302、 DS1307、PCF8485等。这些电路的接口简单、价格低廉、使用方便,被广泛地采用。
本文介绍的实时时钟电路DS1302是DALLAS公司的一种具有涓细电流充电能力的电路,主要特点是采用串行数据传输,可为掉电保护电源提供可编程的充电功能,并且可以关闭充电功能。采用普通32.768kHz晶振。是一种高性能、低功耗、带RAM的实时时钟芯片,它可以对年、月、日、周、时、分、秒进行计时,具有闰年补偿功能,工作电压为2.0V~5.5V。采用三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号或RAM数据。DS1302内部有一个31×8的用于临时性存放数据的RAM寄存器。DS1302是DS1202的升级产品,与DS1202兼容,但增加了主电源/后备电源双电源引脚,同时提供了对后备电源进行涓细电流充电的能力。

光照强度采集电路
3.5.1光敏电阻概述
光敏电阻器(photovaristor)又叫光感电阻,是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。通常,光敏电阻器都制成薄片结构,以便吸收更多的光能。当它受到光的照射时,半导体片(光敏层)内就激发出电子—空穴对,参与导电,使电路中电流增强。
光敏电阻的重要特性是它的阻值大小随着环境光的改变而改变,当环境光比较强时,它的阻值减小,相反当环境光较弱时,它的阻值就会增大,这是跟它本身的制作材料有关的。本文的智能节能台灯设计也是利用了光敏电阻的这一特性,用它来感应环境光的强度。若是环境光较强的时候,比如白天时,光敏电阻的阻值就很小,传感器信号处理电路会根据它的阻值进行相应的处理;相反当环境光较弱的时候,比如晚上或者阴天时,它的电阻值就会变大,传感器信号处理电路就会把这些信号经过处理传到单片机控制电路,从而启动点亮台灯。
3.5.2光敏电阻工作原理
用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。在暗环境里,它的电阻值很高,当受到光照时,只要光子能量大于半导体材料的禁带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对增加了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏电阻阻值下降。光照愈强,阻值愈低。入射光消失后,由光子激发产生的电子—空穴对将逐渐复合,光敏电阻的阻值也就逐渐恢复原值。
3.5.3光敏电阻的分类
根据光敏电阻的光谱特性,可分为三种光敏电阻器。紫外光敏电阻器:对紫外线较灵敏,包括硫化镉、硒化镉光敏电阻器等,用于探测紫外线;红外光敏电阻器:主要有硫化铅、碲化铅、硒化铅。锑化铟等光敏电阻器,广泛用于导弹制导、天文探测、非接触测量、人体病变探测、红外光谱,红外通信等国防、科学研究和工农业生产中;可见光光敏电阻器:包括硒、硫化镉、硒化镉、碲化镉、砷化镓、硅、锗、硫化锌光敏电阻器等。主要用于各种光电控制系统,如光电自动开关门户,航标灯、路灯和其他照明系统的自动亮灭,自动给水和自动停水装置,机械上的自动保护装置和“位置检测器”,极薄零件的厚度检测器,照相机自动曝光装置,光电计数器,烟雾报警器,光电跟踪系统等方面。
3.5.4光敏电阻的主要参数
光敏电阻的主要参数有亮电阻,暗电阻,光电特性 光谱特性,频率特性,温度特性。在光敏电阻两端的金属电极之间加上电压,其中便有电流通过,受到适当波长的光线照射时,电流就会随光强的增加而变大,从而实现光电转换。没有极性,纯粹是个电阻期间,使用时可加直流也可以加交流。
3.5.5 ADC0832简介
ADC0832为8位分辨率A/D转换芯片,其最高分辨可达256级,可以适应一般的模拟量转换要求。其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在05V之间。芯片转换时间仅为32μS,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强。独立的芯片使能输入,使多器件挂接和处理器控制变的更加方便。通过DI数据输入端,可以轻易的实现通道功能的选择。作为单通道模拟信号输入时ADC0832的输入电压是05V且8位分辨率时的电压精度为19.53mV。如果作为由IN+与IN-输入的输入时,可是将电压值设定在某一个较大范围之内,从而提高转换的宽度。但值得注意的是,在进行IN+与IN-的输入时,如果IN-的电压大于IN+的电压则转换后的数据结果始终为00H。
3.5.6 光照强度采集电路
本设计的智能窗帘有光控自动开关的功能,因此必须采集环境中的光照强度,以便进行光照强度的计算和窗帘开关的控制。光照强度采集使用的方案是光敏电阻,由于光敏电阻采集到的是光照强度的模拟量,因此使用ADC0832将光照模拟量转为数字量再传给单片机进行处理。该模块的电路图如图3-10所示。
基于51单片机的智能窗帘仿真原理图程序设计_第3张图片
按键输入模块
键盘是人与单片机打交道的主要设备。站在系统监控软件设计的立场上来看,仅仅完成键盘扫描,读取当前时刻的键盘状态是不够的,还有不少问题需要妥善解决,否则,人们在操作键盘就容易引起误操作和操作失控现象。在单片机应用中键盘用得最多的形式是独立键盘及矩阵键盘。它们各有自己的特点,其中独立键盘硬件电路简单,而且在程序设计上也不复杂,一般用在对硬件电路要求不高的简单电路中;矩阵键盘与独立键盘有很大区别,首先在硬件电路上它要比独立键盘复杂得多,而且在程序算法上比它要烦琐,但它在节省端口资源上有优势得多,因此它更适合于多按键电路。其次就是消除在按键过程中产生的“毛刺”现象。这里采用最常用的方法,即延时重复扫描法,延时法的原理为:因为“毛刺”脉冲一般持续时间短,约为几ms,而我们按键的时间一般远远大于这个时间,所以当单片机检测到有按键动静后再延时一段时间后再判断此电平是否保持原状态,如果是则为有效按键,否则无效。
本设计中由于采用的按键数量较少,只有5个按键,分别是“模式切换”、“设置时间”、“设置阈值”、“减”、“加”,故采用了独立键盘的方式。按键的连接图3-12所示:
基于51单片机的智能窗帘仿真原理图程序设计_第4张图片
.

链接:https://pan.baidu.com/s/1v_-Ypd1vM-la_yCr1wQDaQ
提取码:0dg3

.

你可能感兴趣的:(基于51单片机的智能窗帘仿真原理图程序设计)