- 挑战杯 基于机器学习与大数据的糖尿病预测
laafeer
python
文章目录1前言1课题背景2数据导入处理3数据可视化分析4特征选择4.1通过相关性进行筛选4.2多重共线性4.3RFE(递归特征消除法)4.4正则化5机器学习模型建立与评价5.1评价方式的选择5.2模型的建立与评价5.3模型参数调优5.4将调参过后的模型重新进行训练并与原模型比较6总结1前言优质竞赛项目系列,今天要分享的是基于机器学习与大数据的糖尿病预测该项目较为新颖,适合作为竞赛课题方向,学长非常
- 数据回归算法 | Matlab实现Lasso回归预测模型
天天酷科研
数据回归算法(DR)回归matlab
文章目录效果一览文章概述源码设计参考资料效果一览文章概述数据回归算法|Matlab实现Lasso回归预测模型.在本文,我们继续讲解另外一种可以解决“多重共线性”的算法——Lasso回归(也称L1正则化算法),其全称叫做(最小绝对值收敛和选择算子算法,leastabsoluteshrinkageandselectionoperator)。在本文,我们继续讲解另外一种可以解决“多重共线性”的算法——L
- MATLAB实现岭回归数学建模算法
AI Dog
数学建模\MATLAB算法matlab回归数学建模数据挖掘
岭回归(RidgeRegression)是一种线性回归的扩展,用于处理多重共线性(multicollinearity)的问题。多重共线性是指自变量之间存在高度相关性的情况,这可能导致线性回归模型的不稳定性和过拟合。岭回归通过在损失函数中添加一个正则化项,即岭项(Ridgeterm),来解决多重共线性问题。正则化项的引入有助于限制模型参数的大小,防止它们过度膨胀。岭回归的优化目标是最小化损失函数和正
- MATLAB实现偏最小二乘回归(PLSR)数学建模算法
AI Dog
数学建模\MATLAB算法matlab回归数学建模数据挖掘
偏最小二乘回归(PartialLeastSquaresRegression,简称PLS回归)是一种多元回归分析方法,用于处理具有多重共线性和高维数据的情况。它结合了主成分分析和多元线性回归的特点,旨在降低预测模型中的自变量之间的共线性,并通过捕捉自变量和因变量之间的主要关系来建立模型。PLS回归的核心思想是通过找到一组新的变量(称为部分最小二乘变量或PLS成分),这些新变量是原始自变量的线性组合,
- Cox等级资料是个坑
皮肤科大白
R语言r语言回归
R语言做!初学者先进来看看!!!SCI冲COX多因素模型需要满足的条件:1.各观测值间相互独立,即残差之间不存在自相关;2.因变量和自变量之间存在线性关系;3.残差的方差齐;4.不存在多重共线性;5.没有显著异常值;等级资料要除了设置为因子,还有设置顺序COX分析:做临床信息与预后相关的COX分析大致都会分为两个步骤,先做单因素COX回归分析,再根据P值挑选有意义的变量,最终纳入COX多因素回归模
- 模型诊断——多重共线性
想象_442c
概念产生原因经济变量相关的共同趋势滞后变量的引入样本资料的限制过度决定的模型模型设置问题多少都有多重共线性的情况,完全多重共线性和完全没有多重共线性在实际中都不常见,我们往往讨论的是多重共线性的程度影响完全共线性下参数估计量不存在近似共线性下OLS估计量依然满足BLUE性质但是,会招致以下后果:(1)OLS估计量的方差变大.(2)参数估计量的经济含义不合理.(3)变量的显著性检验和模型的预测能力失
- 机器学习笔记:线性回归
UQI-LIUWJ
机器学习机器学习线性代数
0线性回归的假设线性:自变量(x)和因变量(y)之间应该存在线性关系,这意味着x值的变化也应该在相同方向上改变y值。独立性:特征应该相互独立,这意味着最小的多重共线性。正态性:残差应该是正态分布的。同方差性:回归线周围数据点的方差对于所有值应该相同。假设有如下数据这些数据符合以下图关系(以一维数据为例),这里的函数f(w)忽略了偏置b1最小二乘估计我们的目标是要求w,使得Xw和实际值y最近。所以我
- 一文梳理金融风控建模全流程(Python)
风控小兵突击
智能风控python数据分析算法机器学习数据挖掘概率论
▍目录一、简介风控信用评分卡简介Scorecardpy库简介二、目标定义与数据准备目标定义数据准备三、安装scorecardpy包四、数据检查五、数据筛选六、数据划分七、变量分箱卡方分箱手动调整分箱八、建立模型相关性分析多重共线性检验VIFKS和AUC评分映射PSI稳定性指标九、关键指标说明WOE值IV值逻辑回归KS值PSI▍风控信用评分卡简介通过运用数据挖掘算法,信贷风控系统可以像个"预言家"一
- Python数据分析案例35——多元线性回归全流程 (数据探索可视化,回归分析,多重共线性,残差检验,异方差检验,自相关检验)
阡之尘埃
Python数据分析案例python数据分析多元回归异方差残差检验
案例背景很多经济学同学用Python做传统统计学的回归分析时可能没有R或者Stata,Eviews,SPSS方便,他们对回归分析里面常用的检验过程不熟悉。Python做回归这些当然没有这些统计学,计量经济学常用的软件方便,但是都能做,只是没有人总结一个系统的完整的回归分析的流程。他们做回归往往忽略了,传统统计学还需要做的多重共线性的检验,残差检验,异方差检验,自相关检验等等。本次案例就来总结一下一
- 工智能基础知识总结--特征工程之降维算法
北航程序员小C
人工智能学习专栏深度学习专栏机器学习专栏算法
数据降维简介数据降维即对原始数据特征进行变换,使得特征的维度减少。依据降维过程是否可以用一个线性变换表示,降维算法可以分为线性降维算法和非线性降维算法,下图展示了各种降维算法及其类别:降维的必要性:多重共线性和预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。高维空间本身具有稀疏性。一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有2%。过多的变量,对查找
- 互联网加竞赛 基于机器学习与大数据的糖尿病预测
Mr.D学长
pythonjava
文章目录1前言1课题背景2数据导入处理3数据可视化分析4特征选择4.1通过相关性进行筛选4.2多重共线性4.3RFE(递归特征消除法)4.4正则化5机器学习模型建立与评价5.1评价方式的选择5.2模型的建立与评价5.3模型参数调优5.4将调参过后的模型重新进行训练并与原模型比较6总结1前言优质竞赛项目系列,今天要分享的是基于机器学习与大数据的糖尿病预测该项目较为新颖,适合作为竞赛课题方向,学长非常
- 如何对多元线性回归模型调参?
CA&AI-drugdesign
GPT4线性回归算法回归
多元线性回归模型通常不像复杂的机器学习模型那样拥有许多可调节的超参数。然而,仍有一些关键步骤和技巧可以用于优化多元线性回归模型的性能:特征选择移除无关特征:通过分析特征与目标变量的关联度,移除与目标变量关联度低的特征。使用特征选择方法:可以使用基于统计的方法(如逐步回归)来选择重要的特征。处理多重共线性检测多重共线性:使用相关系数矩阵或方差膨胀因子(VIF)来检测特征之间的多重共线性。减少多重共线
- 和多重共线性一次偶遇
声音止痛剂
在结构方程模型中,调节效应是很常见的形式。它描绘的是自变量(X)对因变量(Y)的作用强度受到调节变量(M)的影响。比如,大家都知道吃夜宵吃多容易变胖,但夜宵在家吃和出去吃可能效果不一样。出去吃烧烤火锅,热量就比在家水煮白菜更容易胖。那么“吃夜宵的量(自变量X)”对“体重增加(因变量Y)”的影响,受到“吃饭地点(调节变量M)”的调节。作用关系如下图:ModerationEffect.png(图片引自
- 清风数学建模笔记-主成分分析
别被算法PUA
数学建模笔记
内容:主成分分析介绍:主成分分析是一种降维算法,它通过旋转和变换将多个指标转化为少数几个主成分,这些主成分是原变量的线性组合,且互不相关,其能反映出原始数据的大部分信息。例如解决多重共线性问题二.PCA的计算步骤1.标准化处理(z标准化:减去均值除以标准差):1.2.计算协方差矩阵:1.3.计算相关系数矩阵R:4计算R的特征值与特征向量:5计算主成分贡献率以及累计贡献率:6通过累计贡献率写出主成分
- 机器学习&深度学习面试笔记
卡卡南安
机器学习机器学习深度学习笔记
机器学习&深度学习面试笔记机器学习Q.在线性回归中,如果自变量之间存在多重共线性,会导致什么问题?如何检测和处理多重共线性?Q.什么是岭回归(RidgeRegression)和Lasso回归(LassoRegression)?它们与普通线性回归之间的区别?Q.逻辑回归与线性回归有什么区别?Q.什么是逻辑回归的目标函数(损失函数)?Q.如何处理多分类问题?Q.L1和L2正则化有什么区别?Q.分类模型
- <第九章、第十章>线性回归及数据分析
HenlyX
作业链接:https://mp.weixin.qq.com/s/MDkLU1yoF6dCXlFWsZ2Tyw这周的学习内容是【回归分析】,涉及到的二级知识点有两个,分别是:1、一元线性回归:相关关系、最小二乘法、拟合优度检测、显著性检验、回归预测、残差分析2、多元线性回归:多重共线性、变量选择与逐步回归总结多元时看的晕乎乎的...
- 竞赛保研 基于机器学习与大数据的糖尿病预测
iuerfee
python
文章目录1前言1课题背景2数据导入处理3数据可视化分析4特征选择4.1通过相关性进行筛选4.2多重共线性4.3RFE(递归特征消除法)4.4正则化5机器学习模型建立与评价5.1评价方式的选择5.2模型的建立与评价5.3模型参数调优5.4将调参过后的模型重新进行训练并与原模型比较6总结1前言优质竞赛项目系列,今天要分享的是基于机器学习与大数据的糖尿病预测该项目较为新颖,适合作为竞赛课题方向,学长非常
- Python | 使用VIF检测多重共线性
python收藏家
pythonpython
多重共线性是指多元回归模型中有两个或两个以上的自变量,它们之间具有高度的相关性。当某些特征高度相关时,我们可能很难区分它们对因变量的个体影响。多重共线性可以使用各种技术来检测,其中一种技术是方差膨胀因子(VIF)。在VIF方法中,我们选择每个特征并将其与所有其他特征进行回归。对于每个回归,因子计算如下:其中,R平方是线性回归中的决定系数。它的值介于0和1之间。正如我们从公式中看到的,R平方的值越大
- 应用回归分析(7):岭回归、SST
Oasis of the World
应用回归分析及spss部分使用回归数据挖掘人工智能
证明总偏差平方和=回归平方和+残差平方和_总偏差平方和残差平方和回归平方和-CSDN博客7.1简介岭回归思想:使得的值最小!!岭回归式为了解决多重共线性问题想法:当自变量存在多重共线性时,时,设想加上一个正常数矩阵,,那么接近奇异值的程度就会变小。注意可以标准化,也可以不标准化。如果也标准化,则是标准化岭回归估计。7.2岭回归的性质先知:均方误差:注意均方误差中只有是随机变量哦!!!,相当于常数。
- 应用回归分析(6):多重共线性
Oasis of the World
应用回归分析及spss部分使用回归数据挖掘人工智能
6.1违背的原则注意:完全多重共线性;复共线性6.2出现的情形完全不想关的变量很少见,当他们之间的相关性较弱时就可以看作是复合多元线性回归矩阵的设计要求。1、经济问题涉及时间序列2、截面数据建立的回归方程(截面数据(cross-sectiondata)是指在同一时间(时期或时点)截面上反映一个总体的一批(或全部)个体的同一特征变量的观测值[1],是样本数据中的常见类型之一。例如,工业普查数据,人口
- 异方差与多重共线性对回归问题的影响
别被算法PUA
回归数学建模数据挖掘
异方差的检验1.异方差的画图观察2.异方差的假设检验,假设检验有两种,一般用怀特检验使用方法在ppt中,课程中也有实验,是一段代码。异方差的解决办法多重共线性多重共线性可能带来的影响:多重共线性的检验多重共线性的处理方法:一般也是直接删除或者使用不要轻易使用逐步回归,因为剔除自变量可能参数内生性,不过数学建模不讲究芥末多所以使用的话问题也不大。
- Python statsmodels模块 回归分析 多重共线性
王叽叽的小心情
问题:采用stasmodles进行单变量回归,结果显示存在多重共线性错误提示:OLSRegressionResults==============================================================================Dep.Variable:eci_midR-squared:0.197Model:OLSAdj.R-squared:0.195
- Linear Regression多重共线性
取名真难.
机器学习线性回归算法回归机器学习python
目录介绍:一、corr二、pairplot三、VIF3.1自带vif3.2自定义函数vif四、heatmp(直观感受)介绍:多重共线性是指在线性回归模型中,自变量之间存在强相关性或线性关系,从而导致模型的稳定性和可解释性受到影响。在线性回归中,我们希望自变量与因变量之间有一定的线性关系,且自变量之间尽可能不相关,这样可以更好地解释因变量的变化。然而,当自变量之间存在强相关性时,模型很难区分各自变量
- 社交网络分析4:社交网络链路预测分析、LightGBM框架、Logistic回归模型、LLSLP方法(LightGBM 堆叠链路预测)、正则化方法、多重共线性、堆叠泛化
是Yu欸
#社交网络分析科研笔记与实践数据挖掘人工智能数据挖掘自然语言处理回归机器学习网络安全笔记
社交网络分析4写在最前面社交网络链路预测分析概述链路预测分析简介链路预测分析的重要性社交网络链路预测分析方法基于网络结构的方法基于节点属性的方法基于随机游走的方法基于深度学习的方法基于相似性和基于似然性的链路预测方法基于相似性的方法基于邻居的方法基于路径的方法基于随机游走的方法基于似然估计的方法两类方法的优缺点LLSLP方法(逻辑斯蒂回归LightGBM堆叠链路预测)方法概述逻辑斯蒂回归模型防止过
- 计量经济学之一文搞懂——拟合优度较低时可能存在的问题
佛系研go
Python笔记计量经济学python学习
一文搞懂——拟合优度较低时可能存在的问题在进行多元线性回归时,经常会遇到模型拟合效果较差的情况,那么这篇博文归纳了:当模型拟合优度较低时可能存在的一些问题。模型拟合优度不高,考虑到可能存在的问题:(1)多重共线性(2)异方差(3)自相关以下给出每种问题的相应检验方法1.多重共线性——方差膨胀因子(VIF)检验VIF全称为VarianceInflationFactor,即方差膨胀因子,是用于检验多元
- 统计学 多元线性回归
Air浩瀚
#统计学线性回归机器学习回归
文章目录统计学多元线性回归多元线性回归模型拟合优度显著性检验线性关系检验回归系数检验多重共线性及其处理多重共线性的问题多重共线性的识别与处理变量选择利用回归方程进行预测哑变量回归统计学多元线性回归多元线性回归模型多元线性回归模型:设因变量为yyy,kkk个自变量分别为x1x_1x1,x2x_2x2,⋯\cdots⋯xkx_kxk,一般表示形式为:y=β0+β1x1+β2x2+⋯+βkxk+εy=\
- 多元回归分析(stata)
疯狂成瘾者
数学建模
文章目录导入数据清屏分为定量数据(summarize)定性数据多元回归分析(定量)联合显著性检验显著性调整后R2R^2R2回归系数表以及它们对应的p值置信区间多元回归分析(定性)(既有虚拟变量)定性分析(设置虚拟变量)拟合优度标准化回归系数异方差检验多重共线性存在多重共线性的处理方法逐步回归(用于解决多重共线性的问题)stata实现逐步回归向后逐步回归操作国赛的例子检验多重共线性的代码方差膨胀因子
- R语言gWQS包在加权分位数和回归模型的应用
天桥下的卖艺者
R语言r语言回归kotlin
在流行病学研究中,相较于单一因素的暴露,多因素同时暴露的情况更为常见。传统模型在评价多因素联合暴露时存在数据维度高、多重共线性等问题.WQS回归模型的基本原理是通过分位数间距及加权的方法,将多种研究因素的效应综合成为一个指数,再进行回归分析。不同因素赋予的权重反映了其对结局的影响程度。使用该模型时应满足各研究因素对结局影响的方向相同这一基本假设.模型的一般形式为:式中:c表示污染物种类;β0表示截
- 多重共线性案例
spssau
SPSSAU处理多重共线性问题一、说明当回归模型中两个或者两个以上的自变量高度相关(比如相关系数大于0.7)时,则称为多重共线性。虽然在实际分析中,自变量高度相关是很常见的,但是在回归分析中存在多重共线性可能会导致一些问题,比如相关分析是负相关回归分析时影响关系是正影响等,所以针对多重共线性问题需要去解决。二、判断标准与处理办法1.判断标准那么如何去解决多重共线性问题?首先对多重共线性的常见判断标
- 线性模型加上正则化
羞儿
机器学习L1L2线性模型
使用弹性网络回归(ElasticNetRegression)算法来预测波士顿房屋价格。弹性网络回归是一种结合了L1和L2正则化惩罚的线性回归模型,能够处理高维数据和具有多重共线性的特征。弹性网络回归的目标函数包括数据拟合损失和正则化项:minw12n∣∣y−Xw∣∣22+α(λ∣∣w∣∣1+12(1−λ)∣∣w∣∣22)min_w\frac{1}{2n}||y-Xw||^2_2+\alpha(\l
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。