t a n h ( x ) = e x − e − x e x + e − x tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}} tanh(x)=ex+e−xex−e−x
S o f t m a x ( X ) = e X ∑ i e x i Softmax(X)=\frac{e^X}{\sum_i{e^{x_i}}} Softmax(X)=∑iexieX
t a n h ( x ) tanh(x) tanh(x)是非线性函数,使用非线性函数增强神经网络表达力,(。・∀・)ノ゙
S o f t m a x ( x ) Softmax(x) Softmax(x)来处理最后的处理结果,计算每种结果的概率,在反向传播时的效果比最小二乘法更好┗|`O′|┛
X i = t a n h ( U i X i − 1 + V i H i + B i ) X_i=tanh\left( U_i X_{i-1} + V_i H_i + B_i \right) Xi=tanh(UiXi−1+ViHi+Bi)
H i = X i H_i=X_i Hi=Xi
对于每次的计算,求取其梯度,然后用梯度更新参数
∂ ε ( t ) ∂ U i = ∂ ε ( t ) ∂ X n ( t ) ∏ k = i + 1 n ∂ X k ( t ) ∂ X k − 1 ( t ) ( ∑ k = 1 t + 1 ( ∂ X k − 1 ∂ U i ∏ T = k t ∂ X i ( T ) ∂ X i ( T − 1 ) ) ) \frac{\partial \varepsilon\left(t\right)}{\partial U_i}=\frac{\partial \varepsilon\left(t\right)}{\partial X_n\left(t\right)} \prod_{k=i+1}^{n}\frac{\partial X_{k}\left(t\right)}{\partial X_{k-1}\left(t\right)} \left( \sum_{k=1}^{t+1} \left( \frac{\partial X_{k-1}}{\partial U_i} \prod_{T=k}^{t}\frac{\partial X_i\left(T\right)}{\partial X_i\left(T-1\right)}\right) \right) ∂Ui∂ε(t)=∂Xn(t)∂ε(t)k=i+1∏n∂Xk−1(t)∂Xk(t)(k=1∑t+1(∂Ui∂Xk−1T=k∏t∂Xi(T−1)∂Xi(T)))
∂ ε ( t ) ∂ U i = ∂ ε ( t ) ∂ X n ( t ) ∏ k = i + 1 n ∂ X k ( t ) ∂ X k − 1 ( t ) ( ∑ k = 1 t + 1 ( ∂ X k − 1 ∂ V i ∏ T = k t ∂ X i ( T ) ∂ X i ( T − 1 ) ) ) \frac{\partial \varepsilon\left(t\right)}{\partial U_i}=\frac{\partial \varepsilon\left(t\right)}{\partial X_n\left(t\right)} \prod_{k=i+1}^{n}\frac{\partial X_{k}\left(t\right)}{\partial X_{k-1}\left(t\right)} \left( \sum_{k=1}^{t+1} \left( \frac{\partial X_{k-1}}{\partial V_i} \prod_{T=k}^{t}\frac{\partial X_i\left(T\right)}{\partial X_i\left(T-1\right)} \right) \right) ∂Ui∂ε(t)=∂Xn(t)∂ε(t)k=i+1∏n∂Xk−1(t)∂Xk(t)(k=1∑t+1(∂Vi∂Xk−1T=k∏t∂Xi(T−1)∂Xi(T)))
∂ ε ( t ) ∂ U i = ∂ ε ( t ) ∂ X n ( t ) ∏ k = i + 1 n ∂ X k ( t ) ∂ X k − 1 ( t ) ( ∑ k = 1 t + 1 ( ∂ X k − 1 ∂ B i ∏ T = k t ∂ X i ( T ) ∂ X i ( T − 1 ) ) ) \frac{\partial \varepsilon\left(t\right)}{\partial U_i}=\frac{\partial \varepsilon\left(t\right)}{\partial X_n\left(t\right)} \prod_{k=i+1}^{n}\frac{\partial X_{k}\left(t\right)}{\partial X_{k-1}\left(t\right)} \left( \sum_{k=1}^{t+1} \left( \frac{\partial X_{k-1}}{\partial B_i} \prod_{T=k}^{t}\frac{\partial X_i\left(T\right)}{\partial X_i\left(T-1\right)} \right) \right) ∂Ui∂ε(t)=∂Xn(t)∂ε(t)k=i+1∏n∂Xk−1(t)∂Xk(t)(k=1∑t+1(∂Bi∂Xk−1T=k∏t∂Xi(T−1)∂Xi(T)))
求其梯度的式子很长,需要追溯到上层神经网络的输出和其他时刻的时候神经网络的输出,所也要用递推的方法求梯度
#include
struct Matrix
{
int rows,colums;
float **val;
void init(int _rows,int _colums)
{
rows=_rows,colums=_colums;
val=new float*[rows];
for(int i=0; i<rows; i++)
{
val[i]=new float[colums];
for(int j=0; j<colums; j++)
val[i][j]=(rand()%200-100)/100.0;
}
}
};
float tanh(float x){
x=exp(x);x=x*x;
return (x-1)/(x+1);
}
struct NerualNetwork
{
int layoutNum;
float factor=0.02;
Matrix *X,*U,*V,*H,*B;
Matrix *D,*dU,*dV,*dB,*TU,*TV,*TB;
Matrix Softmax;
std::vector<int>layout;
void addLayout(int number)
{
layout.push_back(number);
layoutNum++;
}
void bulid(){
X=new Matrix[layoutNum];
H=new Matrix[layoutNum];
D=new Matrix[layoutNum];
U =new Matrix[layoutNum];
dU=new Matrix[layoutNum];
TU=new Matrix[layoutNum];
V =new Matrix[layoutNum];
dV=new Matrix[layoutNum];
TV=new Matrix[layoutNum];
B =new Matrix[layoutNum];
dB=new Matrix[layoutNum];
TB=new Matrix[layoutNum];
srand(time(NULL));
X[0].init(layout[0],1);
D[0].init(layout[0],1);
for(int i=1;i<layoutNum;i++){
X[i].init(layout[i],1);
H[i].init(layout[i],1);
D[i].init(layout[i],1);
U[i].init(layout[i],layout[i-1]);
dU[i].init(layout[i],layout[i-1]);
TU[i].init(layout[i],layout[i-1]);
V[i].init(layout[i],layout[i]);
dV[i].init(layout[i],layout[i]);
TV[i].init(layout[i],layout[i]);
B[i].init(layout[i],1);
dB[i].init(layout[i],1);
TB[i].init(layout[i],1);
}
Softmax.init(layout[layoutNum-1],1);
}
void clearMenory(){
for(int k=1;k<layoutNum;k++)
for(int i=0;i<H[k].rows;i++)
X[k].val[i][0]=0;
}
void InitTrainMenory(){
for(int k=1;k<layoutNum;k++){
for(int i=0;i<B[k].rows;i++)dB[k].val[i][0]=TB[k].val[i][0]=0;
for(int i=0;i<U[k].rows;i++){
memset(dU[k].val[i],0,dU[k].colums*4);
memset(TU[k].val[i],0,TU[k].colums*4);
}
for(int i=0;i<V[k].rows;i++){
memset(dV[k].val[i],0,dV[k].colums*4);
memset(TV[k].val[i],0,TV[k].colums*4);
}
}
}
int updateSoftmax(){
float sum=0;
Matrix M=X[layoutNum-1];
for(int i=0;i<M.rows;i++){
Softmax.val[i][0]=exp(M.val[i][0]);
sum+=Softmax.val[i][0];
}
int k=0;
for(int i=0;i<M.rows;i++){
Softmax.val[i][0]/=sum;
if(Softmax.val[i][0]>Softmax.val[k][0])k=i;
}
return k;
}
Matrix run(int input){
for(int i=0;i<X[0].rows;i++)X[0].val[i][0]=0;
X[0].val[input][0]=1;
for(int k=1;k<layoutNum;k++)
{
for(int i=0;i<H[k].rows;i++)H[k].val[i][0]=X[k].val[i][0];
for(int i=0;i<X[k].rows;i++){
X[k].val[i][0]=B[k].val[i][0];
for(int j=0;j<U[k].colums;j++)
X[k].val[i][0]+=U[k].val[i][j]*X[k-1].val[j][0];
for(int j=0;j<X[k].rows;j++)
X[k].val[i][0]+=V[k].val[i][j]*H[k].val[j][0];
X[k].val[i][0]=tanh(X[k].val[i][0]);
}
}
return X[layoutNum-1];
}
void Partial(int label){
if(label==-1){
for(int i=0;i<D[layoutNum-1].rows;i++)
D[layoutNum-1].val[i][0]=0;
}else{
updateSoftmax();
for(int i=0;i<D[layoutNum-1].rows;i++)
D[layoutNum-1].val[i][0]=Softmax.val[i][0];
D[layoutNum-1].val[label][0]-=1;
}
for(int k=layoutNum-1;k>0;k--){
for(int i=0;i<V[k].colums;i++){
float sum=0;
for(int j=0;j<V[k].rows;j++)sum+=V[k].val[j][i];
for(int j=0;j<TU[k].colums;j++)TU[k].val[i][j]*=sum;
for(int j=0;j<TV[k].colums;j++)TV[k].val[i][j]*=sum;
TB[k].val[i][0]*=sum;
}
for(int i=0;i<TU[k].rows;i++)
for(int j=0;j<TU[k].colums;j++){
TU[k].val[i][j]=(TU[k].val[i][j]+X[k-1].val[j][0])*(1-X[k].val[i][0]*X[k].val[i][0]);
dU[k].val[i][j]+=TU[k].val[i][j]*D[k].val[i][0];
}
for(int i=0;i<TV[k].rows;i++)
for(int j=0;j<TV[k].colums;j++){
TV[k].val[i][j]=(TV[k].val[i][j]+H[k].val[j][0])*(1-X[k].val[i][0]*X[k].val[i][0]);
dV[k].val[i][j]+=TV[k].val[i][j]*D[k].val[i][0];
}
for(int i=0;i<TB[k].rows;i++){
TB[k].val[i][0]=(TB[k].val[i][0]+1)*(1-X[k].val[i][0]*X[k].val[i][0]);
dB[k].val[i][0]+=TB[k].val[i][0]*D[k].val[i][0];
}
for(int i=0;i<U[k].colums;i++){
D[k-1].val[i][0]=0;
for(int j=0;j<U[k].rows;j++)
D[k-1].val[i][0]+=U[k].val[j][i]*(1-X[k].val[j][0]*X[k].val[j][0])*D[k].val[j][0];
}
}
}
void UpdateTrain(){
for(int k=1;k<layoutNum;k++){
for(int i=0;i<B[k].rows;i++)B[k].val[i][0]-=dB[k].val[i][0]*factor;
for(int i=0;i<U[k].rows;i++)
for(int j=0;j<U[k].colums;j++)
U[k].val[i][j]-=dU[k].val[i][j]*factor;
for(int i=0;i<V[k].rows;i++)
for(int j=0;j<V[k].colums;j++){
V[k].val[i][j]-=dV[k].val[i][j]*factor;
}
}
}
}RNN;
int main()
{
RNN.addLayout(5);
RNN.addLayout(5);
RNN.addLayout(5);
RNN.bulid();
for(int i=0;i<10000;i++){
for(int j=0;j<5;j++)
{
RNN.InitTrainMenory();
RNN.clearMenory();
for(int k=0;k<4;k++){
RNN.run((k+j)%5);
if(k==3)RNN.Partial((4+j)%5);
else RNN.Partial(-1);
}
RNN.UpdateTrain();
}
}
for(int j=0;j<5;j++)
{
RNN.clearMenory();
for(int k=0;k<4;k++)RNN.run((k+j)%5),printf("%c ",'a'+(k+j)%5);
int ans=RNN.updateSoftmax();
printf(" -->%c\n",'a'+(ans));
}
return 0;
}
用 a b c d e 训练RNN