CVPR2021 | 最新CVPR2021论文抢先看,附全部下载链接!

CVPR2021 | 最新CVPR2021论文抢先看,附全部下载链接!_第1张图片

持续更新Github:

https://github.com/Sophia-11/Awesome-CVPR-Paper 

2021持续论文集锦百度云请在【计算机视觉联盟】后台回复  CVPR2021

往年论文集锦请在【计算机视觉联盟】后台回复  CVPR2019 

2020持续论文集锦请在【计算机视觉联盟】后台回复  CVPR2020

CVPR 2021

致力于计算机视觉和模式识别包括颜色检测、跟踪、运动、物体识别、音响和目标检测。

  • Image-to-image Translation via Hierarchical Style Disentanglement Xinyang Li, Shengchuan Zhang, Jie Hu, Liujuan Cao, Xiaopeng Hong, Xudong Mao, Feiyue Huang, Yongjian Wu, Rongrong Ji https://arxiv.org/abs/2103.01456 https://github.com/imlixinyang/HiSD
  • FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation https://arxiv.org/pdf/2012.08512.pdf https://tarun005.github.io/FLAVR/Code https://tarun005.github.io/FLAVR/
  • Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition Stephen Hausler, Sourav Garg, Ming Xu, Michael Milford, Tobias Fischer https://arxiv.org/abs/2103.01486
  • Depth from Camera Motion and Object Detection Brent A. Griffin, Jason J. Corso https://arxiv.org/abs/2103.01468
  • UP-DETR: Unsupervised Pre-training for Object Detection with Transformers https://arxiv.org/pdf/2011.09094.pdf
  • Multi-Stage Progressive Image Restoration https://arxiv.org/abs/2102.02808 https://github.com/swz30/MPRNet
  • Weakly Supervised Learning of Rigid 3D Scene Flow https://arxiv.org/pdf/2102.08945.pdf https://arxiv.org/pdf/2102.08945.pdf https://3dsceneflow.github.io/
  • Exploring Complementary Strengths of Invariant and Equivariant Representations for Few-Shot Learning Mamshad Nayeem Rizve, Salman Khan, Fahad Shahbaz Khan, Mubarak Shah https://arxiv.org/abs/2103.01315
  • Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels https://arxiv.org/abs/2101.05022 https://github.com/naver-ai/relabel_imagenet
  • Rethinking Channel Dimensions for Efficient Model Design https://arxiv.org/abs/2007.00992 https://github.com/clovaai/rexnet
  • Coarse-Fine Networks for Temporal Activity Detection in Videos Kumara Kahatapitiya, Michael S. Ryoo https://arxiv.org/abs/2103.01302
  • A Deep Emulator for Secondary Motion of 3D Characters Mianlun Zheng, Yi Zhou, Duygu Ceylan, Jernej Barbic https://arxiv.org/abs/2103.01261
  • Fair Attribute Classification through Latent Space De-biasing https://arxiv.org/abs/2012.01469 https://github.com/princetonvisualai/gan-debiasing https://princetonvisualai.github.io/gan-debiasing/
  • Auto-Exposure Fusion for Single-Image Shadow Removal Lan Fu, Changqing Zhou, Qing Guo, Felix Juefei-Xu, Hongkai Yu, Wei Feng, Yang Liu, Song Wang https://arxiv.org/abs/2103.01255
  • Less is More: CLIPBERT for Video-and-Language Learning via Sparse Sampling https://arxiv.org/pdf/2102.06183.pdf https://github.com/jayleicn/ClipBERT
  • MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing Zhengjue Wang, Hao Zhang, Ziheng Cheng, Bo Chen, Xin Yuan https://arxiv.org/abs/2103.01786
  • AttentiveNAS: Improving Neural Architecture Search via Attentive https://arxiv.org/pdf/2011.09011.pdf
  • Diffusion Probabilistic Models for 3D Point Cloud Generation Shitong Luo, Wei Hu https://arxiv.org/abs/2103.01458
  • There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge Francisco Rivera Valverde, Juana Valeria Hurtado, Abhinav Valada https://arxiv.org/abs/2103.01353 http://rl.uni-freiburg.de/research/multimodal-distill
  • Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation https://arxiv.org/abs/2008.00951 https://github.com/eladrich/pixel2style2pixel https://eladrich.github.io/pixel2style2pixel/
  • Hierarchical and Partially Observable Goal-driven Policy Learning with Goals Relational Graph Xin Ye, Yezhou Yang https://arxiv.org/abs/2103.01350
  • RepVGG: Making VGG-style ConvNets Great Again https://arxiv.org/abs/2101.03697 https://github.com/megvii-model/RepVGG
  • Transformer Interpretability Beyond Attention Visualization https://arxiv.org/pdf/2012.09838.pdf https://github.com/hila-chefer/Transformer-Explainability
  • PREDATOR: Registration of 3D Point Clouds with Low Overlap https://arxiv.org/pdf/2011.13005.pdf https://github.com/ShengyuH/OverlapPredator https://overlappredator.github.io/

CVPR 2021涵盖的话题:

  • 分段和分组
  • 运动和跟踪
  • 人类的认识
  • Shape-from-X
  • 音响和结构与运动
  • 颜色和纹理
  • 照明和反射建模
  • 基于图像的建模
  • 传感器
  • 形状表示和匹配
  • 计算摄影和视频
  • 早期和生物启发的愿景
  • 视频分析和事件识别
  • 优化方法
  • 脸和姿态分析
  • 视频监控
  • 现场了解
  • 图像和视频检索
  • 医学图像分析
  • 对机器人的愿景
  • 对图形的愿景
  • 统计方法和学习
  • 计算机视觉的应用
  • 文档分析
  • 对象识别/检测/分类

图像处理

  1. Learning to Shade Hand-drawn Sketches 论文地址:https://arxiv.org/abs/2002.11812

2.Single Image Reflection Removal through Cascaded Refinement 论文地址:https://arxiv.org/abs/1911.06634

3.Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data 论文地址:https://arxiv.org/abs/2002.11297

  1. Deep Image Harmonization via Domain Verification 论文地址:https://arxiv.org/abs/1911.13239 代码:https://github.com/bcmi/Image_Harmonization_Datasets

  2. RoutedFusion: Learning Real-time Depth Map Fusion 论文地址:https://arxiv.org/pdf/2001.04388.pdf

 

更新

  1. 视觉常识R-CNN,Visual Commonsense R-CNN

https://arxiv.org/abs/2002.12204

  1. Out-of-distribution图像检测

https://arxiv.org/abs/2002.11297

  1. 模糊视频帧插值,Blurry Video Frame Interpolation

https://arxiv.org/abs/2002.12259

  1. 元迁移学习零样本超分

https://arxiv.org/abs/2002.12213

  1. 3D室内场景理解

https://arxiv.org/abs/2002.12212

6.从有偏训练生成无偏场景图

https://arxiv.org/abs/2002.11949

  1. 自动编码双瓶颈哈希

https://arxiv.org/abs/2002.11930

  1. 一种用于人类轨迹预测的社会时空图卷积神经网络

https://arxiv.org/abs/2002.11927

  1. 面向面向深度人脸识别的通用表示学习

https://arxiv.org/abs/2002.11841

  1. 视觉表示泛化性

https://arxiv.org/abs/1912.03330

  1. 减弱上下文偏差

https://arxiv.org/abs/2002.11812

  1. 可迁移元技能的无监督强化学习

https://arxiv.org/abs/1911.07450

  1. 快速准确时空视频超分

https://arxiv.org/abs/2002.11616

  1. 对象关系图Teacher推荐学习的视频captioning

https://arxiv.org/abs/2002.11566

  1. 弱监督物体定位路由再思考

https://arxiv.org/abs/2002.11359

  1. 通过预培训学习视觉和语言导航的通用代理

https://arxiv.org/pdf/2002.10638.pdf

  1. GhostNet轻量级神经网络

https://arxiv.org/pdf/1911.11907.pdf

  1. AdderNet:在深度学习中,我们真的需要乘法吗?

https://arxiv.org/pdf/1912.13200.pdf

  1. CARS:高效神经结构搜索的持续进化

https://arxiv.org/abs/1909.04977

  1. 通过协作式的迭代级联微调来移除单图像中的反射

https://arxiv.org/abs/1911.06634

  1. 深度神经网络的滤波嫁接

https://arxiv.org/pdf/2001.05868.pdf

  1. PolarMask:将实例分割统一到FCN

https://arxiv.org/pdf/1909.13226.pdf

  1. 半监督语义图像分割

https://arxiv.org/pdf/1811.07073.pdf

  1. 通过选择性的特征再生来抵御通用攻击

https://arxiv.org/pdf/1906.03444.pdf

  1. 实时的基于细粒度草图的图像检索

https://arxiv.org/abs/2002.10310

  1. 用子问题询问VQA模型

https://arxiv.org/abs/1906.03444

  1. 从2D范例中学习神经三维纹理空间

https://geometry.cs.ucl.ac.uk/projects/2020/neuraltexture/

  1. NestedVAE:通过薄弱的监督来隔离共同因素

https://arxiv.org/abs/2002.11576

  1. 实现多未来轨迹预测

https://arxiv.org/pdf/1912.06445.pdf

  1. 使用序列注意力模型进行稳健的图像分类

https://arxiv.org/pdf/1912.02184

你可能感兴趣的:(CVPaper,计算机视觉)