上图为深度学习任务的总体建模流程,从纵向来看分为数据处理、模型设计、训练配置、训练过程和模型保存部分。下面以MNIST数据集识别为例,介绍各部分的实现。
数据处理程序,一般涉及如下五个环节:
读入数据
划分数据集
生成批次数据
训练样本集乱序
校验数据有效性
在实际应用中,保存到本地的数据存储格式多种多样,如MNIST数据集以json格式存储在本地,其数据存储结构如 图2 所示。data包含三个元素的列表:train_set、val_set、 test_set。
train_set(训练集):包含50000条手写数字图片和对应的标签,用于确定模型参数。
val_set(验证集):包含10000条手写数字图片和对应的标签,用于调节模型超参数(如多个网络结构、正则化权重的最优选择)。
test_set(测试集):包含10000条手写数字图片和对应的标签,用于估计应用效果(没有在模型中应用过的数据,更贴近模型在真实场景应用的效果)。
train_set包含两个元素的列表:train_images、train_labels。
train_images:[50000, 784]的二维列表,包含50000张图片。每张图片用一个长度为784的向量表示,内容是28*28尺寸的像素灰度值(黑白图片)。
train_labels:[50000, ]的列表,表示这些图片对应的分类标签,即0-9之间的一个数字。
在本地./work/目录下读取文件名称为mnist.json.gz的MNIST数据,并拆分成训练集、验证集和测试集。
通过大量实验发现,模型对最后出现的数据印象更加深刻。训练数据导入后,越接近模型训练结束,最后几个批次数据对模型参数的影响越大。为了避免模型记忆影响训练效果,需要进行样本乱序操作。具体操作为: 先将样本按顺序进行编号,建立ID集合index_list。然后将index_list乱序,最后按乱序后的顺序读取数据。
先设置合理的batch_size,再将数据转变成符合模型输入要求的np.array格式返回。同时,在返回数据时将Python生成器设置为yield模式,以减少内存占用。
在实际应用中,原始数据可能存在标注不准确、数据杂乱或格式不统一等情况。因此在完成数据处理流程后,还需要进行数据校验,一般有两种方式:
机器校验:加入一些校验和清理数据的操作。
人工校验:先打印数据输出结果,观察是否是设置的格式;再从训练的结果验证数据处理和读取的有效性。
机器校验如下代码所示,如果数据集中的图片数量和标签数量不等,说明数据逻辑存在问题,可使用assert语句校验图像数量和标签数据是否一致。
imgs_length = len(imgs)
assert len(imgs) == len(labels), \
"length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(label))
人工校验是指打印数据输出结果,观察是否是预期的格式。实现数据处理和加载函数后,我们可以调用它读取一次数据,观察数据的shape和类型是否与函数中设置的一致。
# 声明数据读取函数,从训练集中读取数据
train_loader = data_generator
# 以迭代的形式读取数据
for batch_id, data in enumerate(train_loader()):
image_data, label_data = data
if batch_id == 0:
# 打印数据shape和类型
print("打印第一个batch数据的维度,以及数据的类型:")
print("图像维度: {}, 标签维度: {}, 图像数据类型: {}, 标签数据类型: {}".format(image_data.shape, label_data.shape, type(image_data), type(label_data)))
break
上文,我们从读取数据、划分数据集、到打乱训练数据、构建数据读取器以及数据校验,完成了一整套一般性的数据处理流程,下面将这些步骤放在一个函数中实现,方便在神经网络训练时直接调用。
def load_data(mode='train'):
datafile = './work/mnist.json.gz'
print('loading mnist dataset from {} ......'.format(datafile))
# 加载json数据文件
data = json.load(gzip.open(datafile))
print('mnist dataset load done')
# 读取到的数据区分训练集,验证集,测试集
train_set, val_set, eval_set = data
if mode=='train':
# 获得训练数据集
imgs, labels = train_set[0], train_set[1]
elif mode=='valid':
# 获得验证数据集
imgs, labels = val_set[0], val_set[1]
elif mode=='eval':
# 获得测试数据集
imgs, labels = eval_set[0], eval_set[1]
else:
raise Exception("mode can only be one of ['train', 'valid', 'eval']")
print("训练数据集数量: ", len(imgs))
# 校验数据
imgs_length = len(imgs)
assert len(imgs) == len(labels), \
"length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(label))
# 获得数据集长度
imgs_length = len(imgs)
# 定义数据集每个数据的序号,根据序号读取数据
index_list = list(range(imgs_length))
# 读入数据时用到的批次大小
BATCHSIZE = 100
# 定义数据生成器
def data_generator():
if mode == 'train':
# 训练模式下打乱数据
random.shuffle(index_list)
imgs_list = []
labels_list = []
for i in index_list:
# 将数据处理成希望的格式,比如类型为float32,shape为[1, 28, 28]
img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
label = np.reshape(labels[i], [1]).astype('float32')
imgs_list.append(img)
labels_list.append(label)
if len(imgs_list) == BATCHSIZE:
# 获得一个batchsize的数据,并返回
yield np.array(imgs_list), np.array(labels_list)
# 清空数据读取列表
imgs_list = []
labels_list = []
# 如果剩余数据的数目小于BATCHSIZE,
# 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
if len(imgs_list) > 0:
yield np.array(imgs_list), np.array(labels_list)
return data_generator