Strassen矩阵乘法

搬运一下,只能说想出这个乘法的人太牛逼!
暴力解法:即线性代数所学的常规运算,算法复杂度为O(n3)

for (int i =1 to n)
  for (int j = j to n)
    cij = 0
    for (k = 1 to n)
      cij = cij + aik*bkj

Strassen矩阵乘法是通过递归实现的,它将一般情况下二阶矩阵乘法(可扩展到n阶,但Strassen矩阵乘法要求n是2的幂)所需的8次乘法降低为7次,将计算时间从O(nE3)降低为O(nE2.81)。

矩阵C = AB,可写为
C11 = A11B11 + A12B21
C12 = A11B12 + A12B22
C21 = A21B11 + A22B21
C22 = A21B12 + A22B22
如果A、B、C都是二阶矩阵,则共需要8次乘法和4次加法。如果阶大于2,可以将矩阵分块进行计算。耗费的时间是O(nE3)。

要改进算法计算时间的复杂度,必须减少乘法运算次数。按分治法的思想,Strassen提出一种新的方法,用7次乘法完成2阶矩阵的乘法,算法如下:
M1 = A11(B12 - B12)
M2 = (A11 + A12)B22
M3 = (A21 + A22)B11
M4 = A22(B21 - B11)
M5 = (A11 + A22)(B11 + B22)
M6 = (A12 - A22)(B21 + B22)
M7 = (A11 - A21)(B11 + B12)
完成了7次乘法,再做如下加法:
C11 = M5 + M4 - M2 + M6
C12 = M1 + M2
C21 = M3 + M4
C22 = M5 + M1 - M3 - M7
全部计算使用了7次乘法和18次加减法,计算时间降低到O(nE2.81)。计算复杂性得到较大改进。

你可能感兴趣的:(Strassen矩阵乘法)