- 文本纠错(Text Correction)
dundunmm
人工智能数据挖掘文本纠错人工智能数据挖掘文本纠错深度学习
文本纠错(TextCorrection)是自然语言处理(NLP)中的一个重要任务,旨在自动检测并修正文本中的错误,包括拼写、语法、语义等层面的错误。其核心目标是通过算法模型将错误文本转换为符合语言规范的表达。该任务在自动写作辅助、搜索引擎优化、智能客服、教育等多个领域具有广泛应用。输入:包含错误的原始文本(如“我明天要去北京,希望天汽好。”)输出:修正后的规范文本(如“我明天要去北京,希望天气好。
- Transformers模型版本和lm_eval老版本冲突问题ImportError: cannot import name ‘initialize_tasks‘ from ‘lm_eval.task
neverwin6
llamapython服务器
Transformers模型版本和lm_eval老版本冲突问题1问题背景在LLM评测的时候,要用lm_eval模型,而对于像是llama3/Mistrual等比较新的模型,较低的Transformers不能适配,所以要升级到0.40.0以上才行,但是如果升级的话,那么直接在沿用老版本的lm_eval评测就会出现:Traceback(mostrecentcalllast):File"main.py"
- Tree of Thought Prompting(思维树提示)
大数据追光猿
大模型人工智能大数据深度学习语言模型计算机视觉
TreeofThoughtPrompting(思维树提示)是一种新兴的提示工程技术,旨在通过模拟人类解决问题时的多步推理过程,提升大型语言模型(LLM)在复杂任务中的表现。与传统的线性提示方法不同,思维树提示将问题分解为多个可能的推理路径,并以树状结构探索这些路径,从而找到最优解或生成更高质量的结果。这种方法特别适用于需要多步推理的任务,例如数学问题求解、逻辑推理、规划和创造性写作等场景。它结合了
- 95% 向量资源节省,火山引擎云搜索 RAG 技术体系演进
字节跳动云原生计算
火山引擎搜索引擎算法
采访嘉宾|火山引擎云搜索团队鲁蕴铖、李杰辉、余炜强编辑|TinaInfoQ2023年,大模型惊艳了世界。2024年,RAG技术如日中天。RAG使得大模型能够在不更新模型参数的情况下,获得必要的上下文信息,从而减少大模型的幻觉。随着大型语言模型技术的不断成熟和行业应用的深入,人们对RAG系统的期望已经超越了对其“酷炫”效果的追求。企业和组织开始寻找更可靠、可扩展的RAG解决方案,以满足实际业务需求。
- Pydantic模型继承解析:从字段继承到多态模型
title:Pydantic模型继承解析:从字段继承到多态模型date:2025/3/19updated:2025/3/19author:cmdragonexcerpt:涵盖字段继承、属性覆盖、多态模型等关键机制。将掌握类型安全的继承体系构建方法,实现企业级数据校验方案,避免传统面向对象继承的常见陷阱。categories:后端开发FastAPItags:Pydantic模型继承字段覆盖机制多态数
- 1.1PaddleTS_环境配置:一个易用的深度时序建模的Python库
pythonQA
pythonpaddlepaddle
PaddleTS是一个易用的深度时序建模的Python库,它基于飞桨深度学习框架PaddlePaddle,专注业界领先的深度模型,旨在为领域专家和行业用户提供可扩展的时序建模能力和便捷易用的用户体验。PaddleTS的主要特性包括:设计统一数据结构,实现对多样化时序数据的表达,支持单目标与多目标变量,支持多类型协变量封装基础模型功能,如数据加载、回调设置、损失函数、训练过程控制等公共方法,帮助开发
- 【大模型科普】AIGC技术发展与应用实践(一文读懂AIGC)
人工智能
【专栏介绍】⌈⌈⌈人工智能与大模型应用⌋⌋⌋人工智能(AI)通过算法模拟人类智能,利用机器学习、深度学习等技术驱动医疗、金融等领域的智能化。大模型是千亿参数的深度神经网络(如ChatGPT),经海量数据训练后能完成文本生成、图像创作等复杂任务,显著提升效率,但面临算力消耗、数据偏见等挑战。当前正加速与教育、科研融合,未来需平衡技术创新与伦理风险,推动可持续发展。文章目录一、AIGC概述(一)什么是
- 如何创建自定义回调处理器
bBADAS
python开发语言
在现代AI开发中,回调是一个强大的工具,它允许我们在特定事件触发时执行自定义逻辑。本文将深入探讨如何为LangChain创建自定义的回调处理器,从而实现更加灵活的模型交互。技术背景介绍在使用AI模型时,尤其是在处理自然语言生成任务时,可能需要对生成的每个标记(token)进行处理。LangChain提供了一些内置的回调处理器,但为了满足特定的需求,创建自定义回调处理器是非常有必要的。核心原理解析创
- 3DXML 与 SOLIDWORKS 格式转换:技术协同及迪威模型方案
3D小将
迪威模型联讯软件SolidWorks模型UG模型Rhino模型SketchUp模型catia模型stl模型stp模型
一、引言在产品设计的前沿领域,3DXML与SOLIDWORKS作为主流格式,虽各有所长,但因格式差异,常成为数据流通与协作的阻碍。对于技术人员和学生党而言,掌握二者间的转换技术,不仅能提升设计效率,更是参与复杂项目协作的必备技能。迪威模型在线转换功能,凭借其先进技术,为这一转换难题提供了高效解决方案。二、3DXML与SOLIDWORKS格式基础(一)3DXML3DXML由达索系统精心打造,其核心压
- 2025年毕设ssm校园二手交易平台论文+源码
锦程学长--毕设程序
课程设计
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容选题背景关于校园二手交易平台的研究,现有成果多集中于社会综合型平台(如闲鱼、转转)的商业模式分析,或理论层面的共享经济模型探讨,而针对高校场景特殊性(如用户密度高、交易标的额小、社交属性强)的垂直型平台研究存在明显缺口。当前高校内二手交易多依赖社群、论坛等分散渠道,存在信息不对称、交易
- EmbodiedSAM:在线实时3D实例分割,利用视觉基础模型实现高效场景理解
数据猎手小k
3D实例分割在线实时感知视觉基础模型(VFM)应用
2025-02-12,由清华大学和南洋理工大学的研究团队开发一种名为EmbodiedSAM(ESAM)的在线3D实例分割框架。该框架利用2D视觉基础模型辅助实时3D场景理解,解决了高质量3D数据稀缺的难题,为机器人导航、操作等任务提供了高效、准确的视觉感知能力。一、研究背景随着机器人技术和人工智能的发展,机器人在复杂环境中执行任务(如导航、操作和交互)的能力越来越依赖于对三维(3D)场景的实时、准
- 奥林巴斯道Olympus DAO、奥拉丁模式、诺瓦银行、RWA模型合约解析开发
白马区块Crypto100
web3区块链区块链项目
关于OlympusDAO技术合约解析的文章草稿,整体结构偏向技术向,适合有一定DeFi或区块链背景的读者。你可以根据自己的需求微调。技术帮助“Crypto100”深入理解DeFi2.0的创新机制一、引言2021年,OlympusDAO凭借其颠覆性的机制和“协议拥有流动性”(Protocol-OwnedLiquidity,POL)概念引发了DeFi世界的巨大关注。它不是一个传统意义上的稳定币项目,而
- 国产信创AI IDE:开启智能编程新时代
InsCode AI IDE
国产信创AIIDE:开启智能编程新时代随着信息技术的迅猛发展,软件开发工具也在不断演进。近年来,人工智能(AI)技术的应用为编程工具带来了革命性的变化。其中,国产信创AIIDE——InsCodeAIIDE,作为一款由CSDN、GitCode和华为云CodeArtsIDE联合开发的新一代集成开发环境(IDE),以其智能化、高效化的特点,正在引领智能编程的新时代。最新接入DeepSeek-V3模型,点
- ubuntu为pycharm添加系统快捷启动图标
金大大诶
Linux
一、首先,在桌面创建一个文件:pycharm.desktop二、编辑文件,添加以下内容:(Exec是sh文件位置,icon是图标文件位置)[DesktopEntry]Version=1.0Type=ApplicationName=PycharmIcon=/home/du/Documents/pycharm-community-2017.3.3/bin/pycharm.pngExec=/home/d
- 大模型相关网站整理
gorgor在码农
AI实战pythonjava人工智能
目录一:大模型开发网站1.开源模型平台2.私有化部署大模型3.LangChain中文网4.LangChain4j5.通过标准的OpenAIAPI格式访问所有的大模型二:国内AI大模型应用盘点聊天1、阿里云--通义千问2、科大讯飞--星火大模型园3、百度--文心一言4、字节跳动豆包5、智谱华章--智谱清言6、华为云园--盘古7、百川智能--百小应8、腾讯--腾讯元宝9、商汤--商量10、MiniMa
- Python 的 ORM(Object-Relational Mapping)工具浅讲
Code_Geo
python开发语言
SQLAlchemy相关讲解1.SQLAlchemy是什么?定义:一个Python的ORM(Object-RelationalMapping)工具,允许开发者通过Python类与对象操作数据库,而非直接编写SQL。核心组件:Core:底层SQL表达式语言,提供数据库无关的SQL操作接口。ORM:基于Core的高层抽象,将数据库表映射为Python类(模型),记录映射为对象。适用场景:需要灵活操作数
- 深度学习-130-RAG技术之基于Anything LLM搭建本地私人知识库的应用策略问题总结(一)
皮皮冰燃
深度学习深度学习人工智能RAG
文章目录1AnythingLLM的本地知识库1.1本地知识库应用场景1.2效果对比及思考1.3本地体现在哪些方面1.3.1知识在本地1.3.2分割后的文档在本地1.3.3大模型部署运行在本地2问错问题带来的问题2.1常见的问题2.2原因分析3为什么LLM不使用我的文件?3.1LLM不是万能的【omnipotent】3.2LLM不会自省【introspect】3.3AnythingLLM是如何工作的
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- 游戏开发引擎对比:Godot、Unity、Unreal与cocos2d的优劣分析
scoone
游戏引擎godotunity
在游戏开发的世界中,选择合适的游戏引擎是项目成功的关键之一。本文将对比四种流行的游戏开发引擎:Godot、Unity、UnrealEngine和cocos2d,分析各自的优缺点,帮助开发者做出明智的选择。Godot:优点:开源且免费,无商业授权费用。轻量级,适合中小型游戏开发。使用GDScript脚本语言,易于上手。跨平台支持良好。缺点:社区相对较小,资源不如Unity丰富。在3D游戏开发方面不如
- Python 常用内建模块-base64
赔罪
Python系统学习python前端linux
目录base64小结练习base64Base64是一种用64个字符来表示任意二进制数据的方法。用记事本打开exe、jpg、pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要让记事本这样的文本处理软件能处理二进制数据,就需要一个二进制到字符串的转换方法。Base64是一种最常见的二进制编码方法。Base64的原理很简单,首先,准备一个包含64个字符的数
- python ansys workbench联动_【干货】如何在ANSYS WORKBENCH中关联几何模型和有限元模型...
weixin_39644377
pythonansysworkbench联动
原标题:【干货】如何在ANSYSWORKBENCH中关联几何模型和有限元模型我们都知道,通过诸如HPERMESH这样的有限元网格划分软件得到的模型,在传入ANSYS以后,只包含节点和单元信息。但是当我们在WB中使用模型操作时,有时候需要选择几何特征,如在圆孔面上施加圆柱支撑,而此时对象只有单元节点信息,并无体面线的几何信息,该怎么办呢?显然,处理此问题的有效途径,在于把有限元模型与该有限元模型对应
- python ansys workbench联动_如何在ANSYS WORKBENCH中关联几何模型和有限元模型
YUNYA麻麻
pythonansysworkbench联动
我们都知道,通过诸如HPERMESH这样的有限元网格划分软件得到的模型,在传入ANSYS以后,只包含节点和单元信息。但是当我们在WB中使用模型操作时,有时候需要选择几何特征,如在圆孔面上施加圆柱支撑,而此时对象只有单元节点信息,并无体面线的几何信息,该怎么办呢?显然,处理此问题的有效途径,在于把有限元模型与该有限元模型对应的几何模型进行关联,再一起导入到MECHANICAL中进行分析,则既能够既享
- 数据增强:扩充数据集提升模型泛化能力
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1.数据增强的重要性在机器学习领域,模型的泛化能力至关重要。一个泛化能力强的模型能够在未见数据上表现良好,而过拟合的模型则会在训练数据上表现出色,但在新数据上表现糟糕。数据增强是一种有效提升模型泛化能力的技术,它通过对现有数据进行各种变换,人为地扩充数据集,从而增加训练数据的数量和多样性。1.2.数据增强的应用场景数据增强广泛应用于各种机器学习任务中,包括:图像识别:对图像进行旋转
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- NLP高频面试题(三)——普通RNN的梯度消失和梯度爆炸问题
Chaos_Wang_
NLP常见面试题自然语言处理rnn人工智能
普通RNN(循环神经网络)的梯度消失和梯度爆炸问题是指在训练深层或长序列的RNN模型时出现的两种典型问题:一、梯度消失(VanishingGradient)梯度消失是指在反向传播过程中,梯度逐层传播时变得越来越小,最终趋于接近0,导致模型前层的参数难以更新。原因:在反向传播时,每一层的梯度是通过链式法则计算得到的。因为链式求导中不断乘以一个较小的数值(小于1),随着层数或时间步的增加,梯度将指数级
- NL2SQL 优化之 Schema 编写标准
kakaZhui
oracle数据库AIGCpythonllamachatgpt
写在前面在自然语言转SQL(NL2SQL,或Text-to-SQL)任务中,数据库Schema的质量和表示方式对模型的性能有着至关重要的影响。一个清晰、规范、易于理解的Schema能够帮助模型更好地理解数据库结构,从而生成更准确的SQL查询。相反,一个混乱、不规范的Schema会增加模型的理解难度,导致生成的SQL查询错误百出。本文将深入探讨NL2SQL任务中Schema的编写标准,详细介绍如何为
- 在 Ansys Mechanical 中创建等效应力结果并使用 Python 导出到文件
David WangYang
硬件工程
介绍在AnsysMechanical模型中,通常需要对许多实体/曲面体或它们组进行后处理等效应力或总变形等。使用分组在TreeGrouping文件夹中的NamedSelections,可以在Mechanical中编写Python脚本来自动生成结果对象。此外,once可以获取新创建的结果对象,并再次使用Mechanical中的Python脚本将所有结果集的结果导出到.csv文件。在本文中,我们将探讨
- 常见Linux指令详解:新手入门指南
PS下载安装免费教程
Linuxlinux网络服务器
一、文件和目录管理1.ls:列出目录内容功能:显示指定目录中的文件和文件夹。常用选项:-l:以详细列表形式显示-a:显示所有文件,包括隐藏文件-h:以人类可读的格式显示文件大小示例:ls-lh/home/user2.cd:改变当前工作目录功能:切换当前的工作目录。示例:cd/var/www3.mkdir:创建新目录功能:创建一个或多个新目录。示例:mkdirmy_projectmkdir-ppro
- 常见的数学统计模型
若木胡
数学模型
以下是常见的数学统计模型分类及简要说明,适用于数据分析、预测和推断等场景:1.参数模型(ParametricModels)假设数据服从特定分布(如正态分布),通过估计参数来描述数据规律。1.1线性回归模型数学形式:(y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_px_p+\epsilon)应用:预测连续型目标变量(如房价预测)。特点:简单、可解释性强,假
- vscode连接远程服务器docker里的容器--使用remote ssh
欢仔要学习
python学习ubuntu
背景介绍:因为工作的原因,图像相关,模型训练,需要在服务器上面搞,同时,服务器上面的环境配置,全部使用的是docker创建容器的方式。但是呢,之前没有配置好服务器与本机的交互环境,每次更改代码,要上传,下载,很不方便,同时图片也没办法可视化。很不友好。于是就想要使用vscode来连接远程服务器docker;因为docker创建的那个容器相当于是一台ubuntu主机,配置好端口,然后我们从外面去连接
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc