- AIGC遇上Stable Diffusion:当创意邂逅精准,绘梦成真之旅
DTcode7
AI生产力AIAIGCstablediffusionAI生产力前沿
AIGC遇上StableDiffusion:当创意邂逅精准,绘梦成真之旅AIGC:创意的魔杖,还是技术的魔法?基本概念与魔法起源作用说明:从想象到像素的跨越StableDiffusion实战演练:像素炼金术士的秘籍案例一:像素画师初体验案例二:风格迁移的魔法深入探索:多维度功能使用实战开发技巧与避坑指南技巧一:性能优化避坑:图像模糊或失真安全防范:避免生成有害内容结语:未来已来,梦想无界在这个数字
- AI绘画能取代设计师吗?
网络安全我来了
IT技术AI作画
AI绘画能取代设计师吗?在日益数字化的时代,人工智能(AI)正在快速渗透我们的生活和工作中。特别是在设计领域,AI绘画这一新兴技术引发了热烈讨论。你是否也曾好奇,AI绘画是否有可能取代设计师的工作?让我们一同探讨这个引人深思的话题。1.AI绘画的现状1.1AI绘画技术的形成与发展AI绘画的背后,离不开图像风格迁移、图文预训练模型和扩散模型这三大技术的共同推动。有点像是一位多才多艺的音乐家,利用不同
- 使用Python实现LLM的文本生成:风格迁移与内容控制
二进制独立开发
GenAI与Python非纯粹GenAIpython开发语言人工智能自然语言处理分布式语言模型transformer
文章目录引言1.大型语言模型(LLM)概述1.1Transformer架构1.2预训练与微调2.文本生成基础2.1无条件生成2.2条件生成3.风格迁移3.1风格迁移的基本原理3.2使用Python实现风格迁移4.内容控制4.1内容控制的基本原理4.2使用Python实现内容控制5.高级技巧与优化5.1多轮对话生成5.2生成参数优化6.应用场景与未来展望结论引言随着自然语言处理(NLP)技术的快速发
- GAN在图像增强中的应用实战指南
码字仙子
本文还有配套的精品资源,点击获取简介:图像增强技术通过算法改善图像质量,GAN作为一种生成对抗网络,在此领域具有重要应用。通过生成器和判别器的对抗性训练,GAN可以生成逼真图像、修复低质量图像、扩增数据集并进行风格迁移。本项目将介绍如何使用Python及其相关库实现GAN图像增强,包括模型的构建、训练和评估。通过项目案例学习,你可以掌握GAN在图像增强中的实际应用,提高图像处理和深度学习的技能。1
- 直方图匹配(Histogram Matching)
姜太公钓鲸233
计算机视觉人工智能机器学习
直方图匹配(HistogramMatching),也被称为直方图规定化(HistogramSpecification)或直方图修正(HistogramEqualization),是一种图像处理技术,用于调整图像的直方图,以使其与某个目标直方图相匹配。目标直方图通常是用户定义的或者是希望获得的期望分布。直方图匹配的目标是改变图像的像素值分布,从而使其在视觉上更接近目标直方图。这对于图像增强、风格迁移
- 常见大模型框架
AI小夜
ai
生成对抗网络(GAN)类似框架StyleGAN(及其变体StyleGAN2和StyleGAN3):开发者:NVIDIA特点:能够生成极高质量的图像,广泛应用于人脸生成、艺术创作等领域。BigGAN:开发者:DeepMind特点:在大规模数据集上训练的高质量图像生成模型,特别适用于高分辨率图像生成。CycleGAN:特点:用于图像到图像的转换任务,如风格迁移,无需成对的训练数据。Pix2Pix:特点
- 基于白盒表征的图像卡通化
Mezereon
取自CVPR2020的一篇文章LearningtoCartoonizeUsingWhite-boxCartoonRepresentations图像卡通化,即是将自然拍摄到的图片转化成卡通风格的图片,属于一种风格迁移。图像卡通化的例子如上图所示,左图为真实图片,右图为卡通化的结果。风格迁移很久之前就被人提出来了,比如2016年BAIR实验室提出来的Pix2Pix,以及之后针对非pair数据所提出来的
- pytorch实战-7图像风格迁移
新世纪摸鱼战士678
pytorch人工智能python
1什么是风格迁移howto:还是cnn,输入是图像,输出和上一章相比,不是数字,而是图像。意义:给一张图像输入,可以输出指定风格化处理的图像2风格迁移发展简史早期针对图像局部特征(纹理生成)或特定风格/场景建立模型,迁移时通过套用模型提取图片纹理或转化风格。缺点是特征/风格单一,无法通用。2015lerogatys尝试用神经网络做风格迁移,效果很好,并成为了主流。神经网络做风格迁移前,主要有纹理生
- 4. 生成对抗网络(GAN):生成模型的崛起
Network_Engineer
机器学习python深度学习机器学习算法人工智能
引言生成对抗网络(GAN)是近年来深度学习领域中最具创新性和影响力的模型之一。GAN通过生成器和判别器的对抗性训练,能够生成逼真的图像、音频、文本等数据,广泛应用于图像生成、数据增强、风格迁移等任务中。本篇博文将深入解析GAN的基本原理、训练过程,以及其在各类生成任务中的应用。1.GAN的基本架构生成对抗网络(GAN)由两个核心部分组成:生成器(Generator)和判别器(Discriminat
- AI自动生成视频Runway Gen-2免费试用指南
wrangler_csdn
人工智能AI作画ai
最近《瞬息全宇宙》幕后技术公司Runway公开了旗下具有AI功能的视频编辑工具Gen-2,用户可以直接使用文本提示生成逼真的视频内容。小编最近也试用了一下生成效果非常炸裂:文字生成视频提示词生成视频:无人机拍摄的山脉画面。修改视频用提示词修改视频:一隻白色皮毛上有黑色斑點的狗。视频风格迁移目前免费用户可以使用Gen-2生成5个5秒时长的视频。使用指南Gen-2-BestAIApp
- DeepArt——AI美术创作工具,能够帮助生成视觉内容
爱研究的小牛
AIGC人工智能深度学习
一、DeepArt的介绍DeepArt是一种基于深度学习的艺术风格迁移应用,能够将输入图像转换成具有特定艺术风格的输出图像。它的核心技术主要依赖于深度卷积神经网络(CNN)和风格迁移算法,能够将著名艺术作品的风格应用到用户的照片或图像上,从而创造出独具特色的艺术效果。二、DeepArt的使用选择内容图像和风格图像:用户首先需要上传一张内容图像,即他们希望转换成艺术风格的图像。接着,可以从提供的艺术
- 计算机设计大赛 深度学习图像风格迁移
iuerfee
python
文章目录0前言1VGG网络2风格迁移3内容损失4风格损失5主代码实现6迁移模型实现7效果展示8最后0前言优质竞赛项目系列,今天要分享的是深度学习图像风格迁移-opencvpython该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:https://gitee.com/dancheng-senior
- 生成对抗网络 Generative Adversarial Nets(GAN)详解
Longlongaaago
机器学习论文生成对抗网络机器学习深度学习
生成对抗网络GenerativeAdversarialNets(GAN)详解近几年的很多算法创新,尤其是生成方面的task,很大一部分的文章都是结合GAN来完成的,比如,图像生成、图像修复、风格迁移等等。今天主要聊一聊GAN的原理和推导。github:http://www.github.com/goodfeli/adversarial论文:https://arxiv.org/abs/1406.26
- MATLAB环境下生成对抗网络系列(11种)
哥廷根数学学派
信号处理深度学习图像处理matlab生成对抗网络开发语言
为了构建有效的图像深度学习模型,数据增强是一个非常行之有效的方法。图像的数据增强是一套使用有限数据来提高训练数据集质量和规模的数据空间解决方案。广义的图像数据增强算法包括:几何变换、颜色空间增强、核滤波器、混合图像、随机擦除、特征空间增强、对抗训练、生成对抗网络和风格迁移等内容。增强的数据代表一个分布覆盖性更广、可靠性更高的数据点集,使用增强数据能够有效增加训练样本的多样性,最小化训练集和验证集以
- AI画家第四弹——利用Flask发布风格迁移API
雇个城管打天下
image上篇文章介绍了pythonweb开发中经常使用到的一个框架flask,如果有遗忘的,可以点此回顾AI画家第三弹——毕业设计大杀器之Flask,本文的主要任务就是完成上篇文章末尾的要求,利用Flask发布你自己的风格迁移API。本文源码可在微信公众号「01二进制」后台回复「风格迁移API」获得需求分析我们知道软件工程的第一步就是需求分析,放在这里就是要知道我们需要实现的功能是什么样的。我画
- 温州大学《深度学习》课程课件(十、人脸识别与神经风格迁移)
风度78
神经网络人脸识别深度学习人工智能计算机视觉
这学期我上的另一门课是本科生的《深度学习》,主要用的是吴恩达老师的《深度学习》视频课的内容。使用教材:吴恩达《深度学习》课程笔记课外参考书:《深度学习》,人民邮电出版社,IANGOODFELLOW等,2017年出版课程资源下载链接:https://github.com/fengdu78/deeplearning_ai_books开放了pdf版本的ppt下载:https://github.com/f
- 人工智能(pytorch)搭建模型23-pytorch搭建生成对抗网络(GAN):手写数字生成的项目应用
微学AI
(Pytorch)搭建模型人工智能pytorch生成对抗网络GAN
大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型23-pytorch搭建生成对抗网络(GAN):手写数字生成的项目应用。生成对抗网络(GAN)是一种强大的生成模型,在手写数字生成方面具有广泛的应用前景。通过生成逼真的手写数字图像,GAN可以用于数据增强、图像修复、风格迁移等任务,提高模型的性能和泛化能力。生成对抗网络在手写数字生成领域具有广泛的应用前景。主要应用场景包括数
- 计算机视觉-风格迁移
白云如幻
计算机视觉人工智能深度学习
风格迁移摄影爱好者也许接触过滤波器。它能改变照片的颜色风格,从而使风景照更加锐利或者令人像更加美白。但一个滤波器通常只能改变照片的某个方面。如果要照片达到理想中的风格,可能需要尝试大量不同的组合。这个过程的复杂程度不亚于模型调参。如何使用卷积神经网络,自动将一个图像中的风格应用在另一图像之上,即风格迁移(styletransfer)。这里我们需要两张输入图像:一张是内容图像,另一张是风格图像。我们
- 大创项目推荐 题目:基于深度学习的图像风格迁移 - [ 卷积神经网络 机器视觉 ]
laafeer
python
文章目录0简介1VGG网络2风格迁移3内容损失4风格损失5主代码实现6迁移模型实现7效果展示8最后0简介优质竞赛项目系列,今天要分享的是基于深度学习卷积神经网络的花卉识别该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:原
- 第8章 python深度学习——波斯美女
weixin_42963026
深度学习美女人工智能
第8章生成式深度学习本章包括以下内容:使用LSTM生成文本实现DeepDream实现神经风格迁移变分自编码器了解生成式对抗网络人工智能模拟人类思维过程的可能性,并不局限于被动性任务(比如目标识别)和大多数反应性任务(比如驾驶汽车),它还包括创造性活动。2015年夏天,我们见识了Google的DeepDream算法,它能够将一张图像转化为狗眼睛和错觉式伪影(pareidolicartifact)混合
- KAGGLE · GETTING STARTED CODE COMPETITION 图像风格迁移 示例代码阅读
Karen_Yu_
tensorflowGANkeras计算机视觉风格迁移
本博文阅读的代码来自于I’mSomethingofaPainterMyself|Kaggle倾情推荐:MonetCycleGANTutorial|Kaggle数据集说明I’mSomethingofaPainterMyself|KaggleFilesmonet_jpg-300Monetpaintingssized256x256inJPEGformatmonet_tfrec-300Monetpaint
- 不容错过的免费AI绘图软件:释放你的创造力
白话Learning
ai作画
随着人工智能技术的不断进步,AI绘图软件已经成为许多艺术家和设计师的重要工具。在这篇文章中,我们将介绍一些常见的免费AI绘图软件,并探讨它们的功能、使用方法以及为何值得一试。一、AI绘图软件1.DeepArt.io主要功能:·图片转换:将照片转换成艺术风格的画作。·风格迁移:将一种艺术风格应用到另一幅画作上。·创意生成:基于AI算法生成新的艺术灵感。用户界面与体验:DeepArt.io的用户界面直
- Stable Diffusion 长视频真人动画风格互转
Yuezero_
stablediffusion音视频
StableDiffusionTemporal-Kit和EbSynth从娱乐到商用1.TemporalKit和EbSynth1.1提取关键帧1.2关键帧风格迁移1.3生成序列帧2.真人转卡通3.卡通转真人4.编辑技巧5.ControlNet+TemporalNet+达芬奇Fusion6.RerenderAVideo7.DiffSynth-Studio基于SD的风格化编辑主流方式:ControlNe
- Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
Cat丹
目标:实时任意风格转移方法:adaptiveinstancenormalization原理:图像的风格就是特征图各个featurechannel跨空间的统计信息,比如mean和variance。迁移各个channel的mean和variance就可以实现风格迁移。效果:可实时实现任意风格图片转移,并且可以控制content-styletrade-off,styleinterpolation,col
- diffusion 和 gan 的优缺点对比
木水_
深度学习gandiffusion
sample速度GAN更快,Diffusion需要迭代更多次。训练难度GAN的训练可能是不稳定的,容易出现模式崩溃和训练振荡等问题。Diffusion训练loss收敛性好,比较平稳。模拟分布连续性Diffusion相较于GAN可以模拟更加复杂,更加非线性的分布。但是Diffusion模拟的分布没有GAN连续性好,特别是在video风格迁移的时候,可能帧之间的关系会有很大差别。Diffusion就可
- OpenCV 新版滴 4.5.1 发布啦!
AAI机器之心
opencv人工智能计算机视觉机器学习dnnKNNcnn
发布亮点:OpenCVGithub项目终于突破50000stars!新的里程碑~这次发布的特性包括:集成更多的GSoC2020项目的结果,包括:开发了OpenCV.jsDNN模块,以方便再网页中使用,并提供了相关教程。图像分类目标检测风格迁移语义分割姿态估计OpenCV.jsWASMSIMD优化2.0,网页端调用OpenCV更快了新增文本检测和识别高级APISIFT算法优化,主要是16位整型高斯滤
- 【论文研读】基于卷积神经网络的图像局部风格迁移
lexonT
自2015年Gatys首次提出神经艺术风格迁移框架以来,图像风格迁移逐渐成为计算机图形学和计算机视觉领域的一个研究热点,但是当前针对图像风格迁移的研究大多难以提取图像中的局部进行风格迁移,而将重心放在图像全局风格迁移上,针对局部风格迁移这一研究领域上的空白,浙江工业大学缪永伟与浙江理工大学、中科院自动化研究所合作发表了《基于卷积神经网络的图像局部风格迁移》一文。文中提出了一种基于卷积神经网络的图像
- Pytorch 和 TensorFlow 对比学习笔记,第4周:综合应用和实战项目 Day 21-24: 实战项目
M.D
pytorchtensorflow学习
第4周:综合应用和实战项目Day21-24:实战项目项目目标:开始一个小型项目,如图像分类、文本生成或其他您感兴趣的任务。应用到目前为止所学的知识。项目选择:**图像分类:**使用Pytorch或TensorFlow构建一个能够识别不同类别图像的模型。文本生成:创建一个文本生成模型,例如聊天机器人或者诗歌创作模型。**自选项目:**根据个人兴趣选择其他类型的项目,如语音识别、风格迁移等。实施步骤:
- 图像生成之pix2pix
Wilson_Hank
深度学习计算机视觉人工智能
简要介绍利用GAN做imagetranslation的开山之作:Image-to-ImageTranslationwithConditionalAdversarialNetworks自然语言处理领域有text2text,所以自然而然图像领域也有image2image。作者提出pix2pix,即利用CGAN实现一个解决各种image2image任务(语义分割,边缘检测、风格迁移等等)的通用解决方案和
- Stable Diffusion中几个常用的文件夹
CCSBRIDGE
stablediffusion
常见文本到图像的目录(outputs/txt2img-images):存储从文本描述生成的图像。这类目录通常用于保存用户输入文本提示后,系统生成的图像。图像到图像的目录(outputs/img2img-images):存储基于现有图像进行修改或再创作后生成的新图像。这是用于图像编辑或风格迁移任务的输出位置。附加或实验性质的输出目录(outputs/extras-images):可能用于存储实验性或
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象