- 深度学习理论基础(七)Transformer编码器和解码器
小仇学长
深度学习深度学习transformer人工智能编码器解码器
学习目录:深度学习理论基础(一)Python及Torch基础篇深度学习理论基础(二)深度神经网络DNN深度学习理论基础(三)封装数据集及手写数字识别深度学习理论基础(四)Parser命令行参数模块深度学习理论基础(五)卷积神经网络CNN深度学习理论基础(六)Transformer多头自注意力机制深度学习理论基础(七)Transformer编码器和解码器本文目录学习目录:前述:Transformer
- 大模型介绍
詹姆斯爱研究Java
spring
大模型(LargeModel)指的是拥有庞大参数量的机器学习模型。由于具有更多的参数,大模型能够更好地拟合复杂的数据和模式,从而提供更准确的预测和更好的性能。大模型的参数量通常远远超过常规模型,可以达到数百万甚至数十亿个参数。这些参数通常通过深度神经网络(DeepNeuralNetwork)来表示,包括多个隐藏层和大量的神经元。大模型的训练需要大量的计算资源和数据。通常,它们需要在多个GPU或TP
- 深入解读ChatGPT的工作原理及底层逻辑
NAR_鱼丸
ChatGPT程序人生
ChatGPT的工作原理和底层逻辑可以从多个方面进行解读,主要包括其基本原理、核心技术、训练过程以及应用能力。工作原理涉及了深度学习模型、自然语言处理技术和文本生成算法等多个方面。通过预训练和微调,模型能够理解语言的语法和语义,并能够根据上下文生成符合语境的文本回复。基本原理ChatGPT是一种基于自然语言处理(NLP)和深度学习技术的聊天机器人。其基本原理是使用大量文本数据来训练深度神经网络模型
- 深度学习图像算法中的网络架构:Backbone、Neck 和 Head 详解
肥猪猪爸
#深度学习深度学习算法人工智能数据结构神经网络计算机视觉机器学习
深度学习已经成为图像识别领域的核心技术,特别是在目标检测、图像分割等任务中,深度神经网络的应用取得了显著进展。在这些任务的网络架构中,通常可以分为三个主要部分:Backbone、Neck和Head。这些部分在整个网络中扮演着至关重要的角色,它们各自处理不同的任务,从特征提取到最终的预测输出,形成了一个完整的图像处理流程。本文将详细介绍这三部分的作用以及它们在目标检测和图像分割中的应用,帮助大家更好
- ai绘画工具midjourney怎么下载?附作品管理教程
设计师早上好
Midjourney是一款功能强大的AI绘画工具,它使用机器学习技术和深度神经网络等算法,可以生成各种艺术风格的绘画作品。在创意设计、广告宣传等方面有着广泛的应用前景。那么,ai绘画工具midjourney怎么下载?本文将为您介绍Midjourney的下载以及作品的相关管理。一、Midjourney下载Midjourney的下载非常简单,只需打开Midjourney官网(点击“GetMidjour
- 机器学习和深度学习的区别
不会代码的小林
机器学习
机器学习和深度学习在多个方面存在显著的区别,以下是对这些区别的详细阐述:一、定义与起源机器学习:是人工智能的一个分支领域,它使计算机能够从数据中学习并改进其性能,而无需进行显式编程。机器学习起源于20世纪50年代,随着算法和计算能力的不断发展而逐渐成熟。深度学习:则是机器学习的一个子领域,它利用深度神经网络模型进行学习和预测。深度学习在21世纪初开始兴起,特别是随着大数据的普及和计算能力的显著提升
- 深度神经网络详解:原理、架构与应用
阿达C
活动dnn计算机网络人工智能神经网络机器学习深度学习
深度神经网络(DeepNeuralNetwork,DNN)是机器学习领域中最为重要和广泛应用的技术之一。它模仿人脑神经元的结构,通过多层神经元的连接和训练,能够处理复杂的非线性问题。在图像识别、自然语言处理、语音识别等领域,深度神经网络展示了强大的性能。本文将深入解析深度神经网络的基本原理、常见架构及其实际应用。一、深度神经网络的基本原理1.1神经元和感知器神经元是深度神经网络的基本组成单元。一个
- 如何利用AI提高内容生产效率?
学计算机的睿智大学生
人工智能
如何利用AI提高内容生产效率?简介:探讨如何通过AI技术提升内容生产的效率和质量。方向一:自动化内容生成自动化内容生成是一种利用人工智能技术来自动创建文本、图像、音频等内容的方法。以下是一些常见的自动化内容生成方式:基于模板的生成:根据预设的模板和规则来生成内容。基于数据的生成:利用大量的数据进行学习和推理,从而生成新的内容。基于深度学习的生成:通过训练深度神经网络来生成自然语言文本等内容。需要注
- 关于深度森林的一点理解
Y.G Bingo
机器学习方法机器学习神经网络
2017年年初,南京大学周志华老师上传了一篇名为:DeepForest:TowardsAnAlternativetoDeepNeuralNetworks的论文,一石激起千层浪,各大媒体纷纷讨论着,这似乎意味着机器学习的天色要变,实则不然,周志华老师通过微博解释道,此篇论文不过是为机器学习打开了另一扇窗,是另一种思维,而不是真的去替代深度神经网络(DNN)。下面我就简单概括一下我对这篇论文的理解,如
- LeYOLO 用于目标检测的新型可扩展和高效CNN架构 | 最新轻量化SOTA! 5GFLOP下无对手!
迪菲赫尔曼
YOLOv8改进实战目标检测cnn架构pytorch深度学习轻量化
本改进已集成到YOLOv8-Magic框架。论文地址:https://arxiv.org/pdf/2406.14239代码地址:https://github.com/LilianHollard/LeYOLO/tree/main在深度神经网络中,计算效率对于目标检测至关重要,尤其是在新型模型更倾向于速度而非计算效率(浮点运算次数,FLOP)的情况下。这种演变在一定程度上忽视了嵌入式和面向移动的AI目
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中Mamba有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉论文笔记目标跟踪ECCVMamba状态空间模型人工智能
MambaIR:状态空间模型图像恢复的简单基线近年来,图像恢复技术取得了长足的进步,这在很大程度上归功于现代深度神经网络的发展,如CNN和Transformers。然而,现有的修复骨干往往面临全局接受域和高效计算之间的两难困境,阻碍了它们在实践中的应用。最近,选择性结构化状态空间模型,特别是改进的Mamba模型,在线性复杂度的长程依赖建模方面显示出了巨大的潜力,为解决上述困境提供了一条途径。然而,
- 模型剪枝综述
发狂的小花
人工智能#模型部署深度学习人工智能模型部署模型剪枝性能优化
目录1深度神经网络的稀疏性:2剪枝算法分类:3具体的剪枝方法包括:4剪枝算法流程:5几种常见的剪枝算法:6结构化剪枝和非结构化剪枝各有其优缺点:7剪枝算法对模型精度的影响8影响剪枝算法对模型精度的因素模型压缩中的剪枝算法是一种应用广泛的模型压缩方法,其通过剔除模型中“不重要”的权重,来减少模型的参数量和计算量,同时尽量保证模型的精度不受影响。模型剪枝的核心是模型中的权重、激活、梯度等是稀疏的,减少
- 环境安装-1:Python3.8+CUDA11.6.1+cuDNN8.6+Tensorflow-gpu2.6.1
w坐看云起时
环境安装tensorflowpython人工智能
环境配置建议多看几个别人的安装过程的图文,不要着急,慢慢来,我们肯定行,加油!一、知识储备1.CUDACUDA是显卡厂商NVIDIA推出的运算平台。CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。(来自百度词条)2.cuDNNNVIDIACUDA深度神经网络库(cuDNN)是一个GPU加速的深度神经网络基元库,能够以高度优化的方式实现标准例程(如前向和反
- 学习笔记---自动驾驶
酒饮微醉-
自动驾驶学习笔记自动驾驶
一、理论知识1.自动驾驶决策概述:自动驾驶决策层是系统的核心,负责根据感知层信息建立模型,分析并制定决策策略,控制车辆行驶。2.端到端深度神经网络:通过深度神经网络将感知数据直接映射到控制命令,简化自动驾驶系统的决策流程。3.卷积神经网络(CNN):关键技术用于提取图像特征,包括卷积层、激活函数、池化层等组件处理图像数据。4.循环神经网络(RNN):处理序列数据,如车辆历史速度序列,用于建模时间序
- 深度学习(二)
小泽爱刷题
深度学习人工智能
CuDNN(CUDADeepNeuralNetworklibrary)是NVIDIA为加速深度学习计算而开发的高性能GPU加速库,专门优化了深度神经网络(DNN)的常见操作,如卷积、池化、归一化和激活函数等。CuDNN的主要作用是通过利用GPU的并行计算能力,提高深度学习模型在GPU上的运行效率。CuDNN的作用加速卷积操作:卷积操作是深度学习中特别是在卷积神经网络(CNN)中最重要且最计算密集的
- 这项来自中国的AI研究介绍了1位全量化训练(FQT):增强了全量化训练(FQT)的能力至1位
量子位AI
人工智能机器学习深度学习
全量化训练(FQT)可以通过将激活、权重和梯度转换为低精度格式来加速深度神经网络的训练。量化过程使得计算速度更快,且内存利用率更低,从而使训练过程更加高效。FQT在尽量减少数值精度的同时,保持了训练的有效性。研究人员一直在研究1位FQT的可行性,试图探索这些限制。该研究首先从理论上分析了FQT,重点关注了如Adam和随机梯度下降(SGD)等知名的优化算法。分析中出现了一个关键发现,那就是FQT收敛
- 每天五分钟计算机视觉:Siamese深度神经网络模型和FaceNet的关系
幻风_huanfeng
计算机视觉计算机视觉dnn人工智能SiameseFaceNet神经网络
本文重点在前面的课程中,我们学习了Siamese深度神经网络模型和FaceNet,二者都可以完成人脸识别任务,本文进行整理学习,理清二者的区别和联系。基本概念与原理Siamese深度神经网络模型Siamese网络,又称孪生网络,由两个结构相同且权重共享的神经网络组成。这两个网络分别处理输入的对比样本,通过比较两个输入样本的特征向量来判断它们的相似度。在人脸识别中,Siamese网络通过计算输入人脸
- 深度学习中的梯度消失和梯度爆炸问题
码上飞扬
深度学习人工智能梯度消失梯度爆炸
在深度学习领域,随着模型层数的增加,我们常常会遇到两个棘手的问题:梯度消失(VanishingGradients)和梯度爆炸(ExplodingGradients)。这两个问题严重影响了深度神经网络的训练效率和性能。本文将详细介绍这两个问题,并通过实例帮助读者更好地理解。一、梯度消失问题梯度消失是深度学习中的一大难题,尤其在训练深度神经网络时显得尤为棘手。这一问题的本质在于,当我们在训练过程中通过
- 吴恩达深度学习笔记(24)-为什么要使用深度神经网络?
极客Array
为什么使用深层表示?(Whydeeprepresentations?)我们都知道深度神经网络能解决好多问题,其实并不需要很大的神经网络,但是得有深度,得有比较多的隐藏层,这是为什么呢?我们一起来看几个例子来帮助理解,为什么深度神经网络会很好用。首先,深度网络在计算什么?如果你在建一个人脸识别或是人脸检测系统,深度神经网络所做的事就是,当你输入一张脸部的照片,然后你可以把深度神经网络的第一层,当成一
- AI人工智能深度学习算法:卷积神经网络的原理与应用
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能深度学习算法:卷积神经网络的原理与应用作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能的兴起与深度学习的崛起人工智能(AI)是指计算机科学的一个分支,旨在创造能够执行通常需要人类智能的任务的智能机器,例如学习、解决问题和决策。近年来,人工智能取得了显著的进展,这在很大程度上归功于深度学习的崛起,深度学习是一种强大的机器学习形式,它使用具有多个层的深度神经网络来学习数据中的复杂模式
- python 数据分析 损失数值 如何放到csv中呢 人工智能 深度神经网络,Pytorch ,tensorflow
zhangfeng1133
python人工智能数据分析
损失数值如何放到csv中呢在Python中,使用`csv`模块将数据写入CSV文件是一种常见的操作。从你提供的代码片段来看,你想要将损失数值写入名为`middle_losse.csv`的文件中。但是,你提供的代码片段中存在一些需要修改的地方,以确保数据能够正确地写入CSV文件。首先,`csv.writer`对象的`writerows`方法需要一个可迭代对象,例如列表的列表,而不是单个列表。如果你的
- 人脸识别设计
melonbo
项目分享深度学习人脸识别openface
总体思路人脸识别使用的算法思路为:首先,定位一张图像中所有的人脸位置;其次,对于同一张脸,当光线改变或者朝向方位改变时,算法还能判断是同一张脸;然后找到每一张脸不同于其他脸的独特之处,比如脸的大小、眉毛的弯曲程度,并表示出来;最后,通过把表示出来的脸的特征数据与数据库中的所有的人脸特征进行匹配,确定图像中人的身份信息。模型介绍OpenFace是一个基于深度神经网络的人脸识别和面部特征提取系统,它主
- 反向传播算法:深度神经网络学习的核心机制
2402_85758936
算法dnn学习
引言深度神经网络(DNNs)之所以在众多领域取得革命性的成功,很大程度上归功于其强大的学习能力,而这一能力的核心是反向传播算法(Backpropagation)。这是一种高效的监督学习算法,用于训练多层前馈神经网络。本文将深入探讨反向传播算法的工作原理及其在DNN中的应用。反向传播算法的基本概念反向传播算法结合了梯度下降优化和链式法则,通过计算损失函数关于网络参数的梯度来更新网络权重。1.损失函数
- 【pytorch(cuda)】基于DQN算法的无人机三维城市空间航线规划(Python代码实现)
程序猿鑫
pythonpytorch算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、DQN算法概述三、基于DQN的无人机三维航线规划方法1.环境建模2.状态与动作定义3.奖励函数设计4.深度神经网络训练5.航线规划四、研究挑战与展望2运行结果3参考文献4Python代码实现⛳️赠与读者做科研,涉及到一个深在的
- 基于深度学习的手势识别系统
毕设宇航
深度学习人工智能手势识别
基于深度学习网络的手势识别系统完整源码+数据集+报告+PPT全套信息【python设计开发】基于深度学习的手势图像识别处理系统【包括】代码PPT报告2需求分析2.1要求(1)用Python语言实现程序设计;(2)初识深度学习和图像处理技术;(3)了解深度神经网络(DeepNeuralNetworks,简称DNN)相关知识;(4)【难点】了解LeNet-5卷积神经网络模型,并进行模型训练;(5)【难
- 基于物理信息的深度神经网络模拟混凝土中氯离子的扩散
算法如诗
物理信息网络(PINN)dnn人工智能神经网络
氯离子在混凝土中的扩散是一个复杂的化学物理过程,对混凝土腐蚀起始时间的预测具有重要意义。但考虑到混凝土的非线性氯离子结合能力,模拟氯离子扩散的方程是有限的。本研究提出了一种基于物理信息的深度神经网络来模拟氯离子在混凝土中的扩散机制并预测氯离子浓度的分布。物理定律被制定为一个损失项,以指导训练过程,并减少模型训练所需的数据。然后将物理约束损失(基于控制方程和边界条件)和训练损失(基于神经网络)融合产
- 最新基于MATLAB机器学习、深度学习实践技术应用
weixin_贾
python深度学习MATLAB编程matlab机器学习深度学习
近年来,MATLAB在机器学习和深度学习领域的发展取得了显著成就。其强大的计算能力和灵活的编程环境使其成为科研人员和工程师的首选工具。在无人驾驶汽车、医学影像智能诊疗、ImageNet竞赛等热门领域,MATLAB提供了丰富的算法库和工具箱,极大地推动了人工智能技术的应用和创新。系统学习机器学习和深度学习的理论知识及对应的代码实现方法,掌握图像处理的基础知识,以及经典机器学习算法和最新的深度神经网络
- 神经网络(深度学习,计算机视觉,得分函数,损失函数,前向传播,反向传播,激活函数)
MarkHD
深度学习神经网络计算机视觉
神经网络,特别是深度学习,在计算机视觉等领域有着广泛的应用。以下是关于你提到的几个关键概念的详细解释:神经网络:神经网络是一种模拟人脑神经元结构的计算模型,用于处理复杂的数据和模式识别任务。它由多个神经元(或称为节点)组成,这些神经元通过权重和偏置进行连接,并可以学习调整这些参数以优化性能。深度学习:深度学习是神经网络的一个子领域,主要关注于构建和训练深度神经网络(即具有多个隐藏层的神经网络)。通
- 飞桨科学计算套件PaddleScience
skywalk8163
人工智能paddlepaddle人工智能飞桨
PaddleScience是一个基于深度学习框架PaddlePaddle开发的科学计算套件,利用深度神经网络的学习能力和PaddlePaddle框架的自动(高阶)微分机制,解决物理、化学、气象等领域的问题。支持物理机理驱动、数据驱动、数理融合三种求解方式,并提供了基础API和详尽文档供用户使用与二次开发。安装当然要先安装好飞桨PaddlePaddle,再安装PaddleSciencepipinst
- 深度学习——梯度消失、梯度爆炸
小羊头发长
深度学习机器学习人工智能
本文参考:深度学习之3——梯度爆炸与梯度消失梯度消失和梯度爆炸的根源:深度神经网络结构、反向传播算法目前优化神经网络的方法都是基于反向传播的思想,即根据损失函数计算的误差通过反向传播的方式,指导深度网络权值的更新。为什么神经网络优化用到梯度下降的优化方法?深度网络是由许多非线性层(带有激活函数)堆叠而成,每一层非线性层可以视为一个非线性函数f(x),因此整个深度网络可以视为一个复合的非线性多元函数
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数