- Windows10/11部署llama及webUi使用
闲杂人等12138
AI探索windowsllamadocker
前言整体是希望在windows下安装llama3:8b以及gemma:7b两个大模型,并使用open/ollama-webui来访问从目标出发,llama3和gemma都属于开源大模型,可以自行编译,但是那个步骤对于初步探索的人来说要求太高了,暂时不考虑这条路。因此以先用起来的目的作为导向,强烈推荐直接使用官方推荐的ollama来直接安装。open/ollama-webui,现在叫open-web
- 1.5 企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力人工智能promptchatgptlangchaingpt
企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径一、技术演进金字塔:四阶技术如何构建AI新范式▲预训练│(万亿参数基建)├─大模型微调│(领域知识注入)├─AI智能体│(任务自动化)└─提示工程(零样本交互)1.1技术层级关系与适用场景技术阶段技术门槛算力需求企业应用成熟度典型工具链提示工程★☆☆☆☆CPU即可90%+企业已部署LangChain、AutoGPT
- 【prompt示例】智能客服+智能质检业务模版
姚瑞南
prompt实战应用案例prompt前端
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)整体结构说明:序号结构说明备注1prompt主体提示词主体主要包含定义角色+背景描述+目标+输出内容2变量变量主要提取知识库文档流程里涉及的⼀些判断项,需要接口的部分3注意事项常规注
- 开源大模型性能追平闭源模型技术路径分析
Mr' 郑
开源
(预测实现时间:2025Q2)开源模型进化路径MoE架构稀疏训练分布式RLHF2024突破2023现状2025超越性能反超一、现状对比与瓶颈分析(2024Q3)1.核心差距量化指标能力维度闭源模型均值开源模型均值差距比例复杂推理(MMLU)86.7%79.2%8.7%代码生成(HumanEval)89.1%81.4%8.5%长文本理解(NarrativeQA)82.3%73.9%10.2%多模态理
- 【毕设专用】2025 AI 多模态 大模型 接入 合集
2401_84711588
人工智能
【ESP32接入国产大模型之kimi】https://vor2345.blog.csdn.net/article/details/140782934【ESP32接入国产大模型之MiniMax】https://vor2345.blog.csdn.net/article/details/136768206【ESP32接入国产大模型之豆包】https://vor2345.blog.csdn.net/ar
- 【stable diffusion模型】Stable diffusion模型分几种?一文详解,入门必看!
AIGC-Lison
stablediffusion人工智能AI绘画AIGCSD模型
前言在StableDiffusion中,模型并不只有一种,不同插件有不同的模型,分别作用于不同的功能。今天Lison老师就带大家一起来学习一下~01大模型也就是stablediffusion模型,在默认界面中,它位于web页面的左上角,下拉列表对应的模型:可以理解为绘画风格集合,SD需要大模型来规定它生成的图片风格,大模型是必选模型,你必须选择一个大模型才能开始生成工作。所有的AI设计工具,安装包
- 智能化售后服务过程如何建立
瑞云服务云
售后管理系统派工管理系统工单管理saascrm
智能高效的售后管理在用传统方式进行售后管理时,客户信息、订单记录等信息录入的工作量非常大,也容易出错;维修进度管理上,也会常出现服务不及时,结果引起客户负面情绪的情况。而使用瑞云服务云的售后服务管理系统,只需要输入关键词,勾勾选选就可以轻松记录;而且智能派单、实时查看流程进度、自动提醒、详尽灵活的数据报表这些功能,都在缩减管理成本、提高管理效率、提升服务品质上变得更容易了。智能派单、服务监控、费用
- 劝大家不要一心扑在刷题上,尤其是高项案例
w011109
模块测试计算机网络软件工程pat考试软件构建
劝大家不要一心扑在刷题上,尤其是高项案例高项三种题型,选择题、案例分析、论文题,其中最不好写的就是案例了,一共三大道材料,很多人都是想着靠亖记硬背和刷题去提分的,但其实一心扑在刷题和背书上是见效蕞慢的,想要案例分析的分数能上去,背完下边锺点考点这些就足够了!!!-[话筒]案例万能答题思路✔看到做计划时倒推日期,都说这是蕞迟时间,风险很大✔看到第.一次看到xx计划,说明编写计划时,大家没参与✔看到改
- IDEA-快捷键积累
Mr.Debug
快捷键intellijidea
文章目录前言一、使用步骤1.debug常用2.查找前言windows系统自己idea的debug快捷键记录。一、使用步骤1.debug常用alt+F10跳转到正在执行的行2.查找Alt+F7查找类或方法在哪被使用Ctrl+H查看类的继承关系,例如HashMap的父类是AbstractMap,子类则有一大堆。Ctrl+F12当前类中查找一个方法快捷键例如在String类中查找contains方法。第
- 腾讯26届实习生招聘火热开启~可内推
飞300
算法业界资讯javascriptphp
腾讯2025实习基地专项启动啦!报名自即日起至2月25日面向毕业时间在2025年9月1日-2026年12月31日期间在校大学生求职辅导、简历直推、专场面试⭐7大岗位,提前投、优先面、简历直推、快人一步⭐软件开发-后台开发方向软件开发-移动客户端开发方向软件开发-PC客户端开发方向软件开发-游戏客户端开发方向软件开发-前端开发方向软件开发-测试开发方向技术运营简历内推链接:https://join.
- DeepSeek提示词,一个高效写法模版!
算法channel
你好,我是郭震最近我收到不少读者留言或来信,是关于本地部署DeepSeek的一些问题。对于这些问题,我会亲自实践还原并找到解决方案,找时间统一给大家答复,留言较多不能一一回复,请见谅。这篇文章来总结下如何写好提示词,从可操作的角度。1为什么提示词比较重要提示词对于大模型而言,就像人对于汽车。有了汽车,司机还得有基本的驾驶技术,这样人车才能一体,如果司机驾驶技术一般就会容易出现问题,人的驾驶技术约等
- 零代码!只需3步用DeepSeek+Ollama+AnythingLLM打造免费AI本地专属知识库(含原理)
少喝冰美式
人工智能DeepSeekDeepSeekR1ollamaAnythingLLMAI知识库
AI时代,个人或企业数据安全与知识管理如何兼得?本文将拆解本地知识库的三大核心技术(嵌入模型/向量数据库/LLM智能问答),将详细介绍如何用DeepSeek+Ollama+AnythingLLM组合,无需任何编程基础,只需3步即可免费零代码搭建全流程私有化智能知识库。轻松拥有你的专属本地知识库,为个人工作生活或者企业组织知识管理的效率提升更进一步!一、引子:为什么你/你的企业正在失去数据金矿?你的
- 释放TikTok潜力:TK采集器让你轻松掌握热门趋势与目标客户
@ V:ZwaitY09
矩阵
提升TikTok营销效率,TK采集器帮你轻松搞定!你还在手动寻找热门话题、精准粉丝群体、潜在客户吗?是时候升级你的TikTok营销工具了!TK采集器,一款强大的TikTok数据采集工具,助你快速获取精准数据,助力营销决策,轻松提高转化率!TK采集器的五大亮点:1️⃣精准采集目标用户数据:快速筛选热门标签、精准粉丝、潜在客户群体,轻松建立客户数据库。2️⃣高效抓取视频内容与互动数据:无需人工操作,自
- DeepSeek接入Python,一般电脑也能飞速跑,确实可以封神了!
算法channel
python开发语言
你好,我是郭震今天这篇教程介绍:DeepSeep最新推理模型R1接入Python编程,在本地电脑从零搭建方法。1这样做有哪些好处?1)大模型在本地搭建,除了能够方便个人知识库管理,详见上一篇介绍,还能提效编程学习,比如Python,Java等,学编程就像学做事的思路和逻辑,挺重要也很有意思。2)DeepSeek最近开源了推理模型R1,开源免费,性能强劲,本文接入的正是DeepSeek的R1;Pyt
- 数字化转型三大核心要素:数据、技术、人才
千千标寻
大数据云计算人工智能ai
数字化转型的三大核心要素——数据、技术和人才,是推动企业在数字经济时代取得成功的关键。数据数据是数字化转型的基础。高质量的数据能够为企业提供深刻的市场洞察和客户行为分析,帮助做出更明智的决策。通过有效管理和利用数据,企业可以优化运营流程,提升产品和服务质量,从而实现更高的效率和客户满意度。技术先进的技术支持是实现数字化转型的关键驱动力。无论是云计算、人工智能、大数据分析还是物联网,这些前沿技术的应
- 商家必看!为什么现在必须布局商业付费流量?这4个原因告诉你答案
会飞的程序猿丫
人工智能大数据
在本地生意竞争白热化的今天,商家如果还依赖“自然流量躺赢”,很可能会被时代淘汰。巨量本地推在产品升级计划,用一组数据揭示了真相:过去一年,使用付费流量的商家成交额增长397%,经营效率提升超50%。这背后传递了一个明确的信号——商业付费流量不再是“可选项”,而是本地商家生存与增长的“必选项”。为什么?我们从运营角度拆解4大核心原因。一、流量红利期稍纵即逝,抢先入局者收割市场抖音生态的本地生活服务正
- 【开发日志】数字人+LLM:从概念到实现的全程记录!
AI大模型-王哥
大模型学习大模型教程大模型人工智能LLM数字人大模型入门
数字人是各种技术的集合,所以文章尽可能完整的介绍,项目中涉及的大小模型均可在本地部署并在我本人机器上运行。系统环境:CPU:i91490016GBGPU:GTX40608GBSYS:Windows11WSL:Ubuntu22.04本文章使用到的技术内容:数字人框架:LiveTalking大模型:Llama3.1TTS:GPT-SoVits语音转视频:Wav2Lip前端展示:WebRTC项目整体架构
- 本地部署的DeepSeek-R1-32B与DeepSeek-R1-7B模型效果对比
MaxCode-1
搭建本地gptDeepseek
本地部署的DeepSeek-R1-32B与DeepSeek-R1-7B模型效果对比在当今人工智能快速发展的时代,大语言模型(LargeLanguageModel,LLM)的应用场景日益广泛。无论是企业级应用还是个人开发,本地部署大语言模型已经成为一种趋势。DeepSeek-R1-32B和DeepSeek-R1-7B作为DeepSeek系列中的两个重要版本,分别代表了不同规模和性能的模型。本文将从多
- 23. AI-大语言模型
真上帝的左手
23.AI人工智能语言模型自然语言处理
文章目录前言一、LLM1.简介2.工作原理和结构3.应用场景4.最新研究进展5.比较二、Transformer架构1.简介2.基本原理和结构3.应用场景4.最新进展三、开源1.开源概念2.开源模式3.模型权重四、再谈DeepSeek前言AI一、LLMLLM(LargeLanguageModel,大语言模型)1.简介 LLM(LargeLanguageModel,大语言模型)是指使用大量文本
- 麒麟8000和麒麟985性能差距
m0_50613577
cpu
1、CPU对比:麒麟8000的CPU领先麒麟985的CPU。麒麟985采用1个2.58GHz的A76大核+3个2.4GHz的A76中核+4个1.84GHz的A55小核,麒麟8000采用1个2.4GHz的A77大核+3个2.19GHz的A77中核+4个1.84GHz的A55小核心我用的华为手机就是活动时抢购的便宜了好几百太给力了http://www.adiannao.cn/dy在实际测试中,麒麟80
- 大模型会替代哪些工作岗位?
中年猿人
人工智能ai学习
引言本文主要探讨了大模型(LLMs)对就业市场的影响。包括了介绍那些已经受到大模型影响的行业,对大模型将要产生的影响,以及如何更好的监管大模型应用进行了讨论。文章还探讨了作为个人和企业,如何适应大模型带来的快速变化。01大模型已经影响的行业大模型已经开始重塑各个行业,对工作角色和行业实践带来了显著的变化。这种影响不仅是理论上的;它在多个领域都有明显体现。受大模型影响最明显的行业之一是客户服务。这个
- RWKV Runner:让RNN-LLM模型触手可及
步子哥
rnn人工智能深度学习
在这个信息爆炸的时代,人工智能(AI)已经成为我们生活中不可或缺的一部分,尤其是大语言模型(LLM)在自然语言处理中的广泛应用。然而,尽管这些技术的潜力巨大,许多用户仍然面临着使用门槛高、配置复杂等问题。为了解决这一困境,RWKVRunner应运而生。它不仅提供了一个简便的接口,还让用户能够轻松地使用大语言模型。本文将深入探讨RWKVRunner的功能、安装步骤以及如何利用它来实现各种应用。RWK
- AI大模型(如GPT、BERT等)可以通过自然语言处理(NLP)和机器学习技术,显著提升测试效率
小赖同学啊
python人工智能自动化测试(apppcAPI)人工智能自然语言处理gpt
在软件测试中,AI大模型(如GPT、BERT等)可以通过自然语言处理(NLP)和机器学习技术,显著提升测试效率。以下是几个具体的应用场景及对应的代码实现示例:1.自动生成测试用例AI大模型可以根据需求文档或用户故事自动生成测试用例。代码示例(使用OpenAIGPTAPI):importopenai#设置OpenAIAPI密钥openai.api_key="your-openai-api-key"#
- 详解 Java 基础的多态机制
红烧白开水。
后端JAVA多态java开发语言后端java基础多态
一、什么是多态?多态(Polymorphism)是面向对象编程(OOP)的三大核心特性之一,指同一操作作用于不同对象时,可以产生不同的行为。在Java中,多态通过以下两种形式体现:编译时多态:方法重载(Overload),根据参数列表在编译时确定调用哪个方法。运行时多态:方法重写(Override),通过继承和接口实现,在运行时动态绑定具体方法(本文重点)。二、多态的核心实现机制1.三个必要条件继
- 数据结构:队列
muxue178
数据结构
1.概念:和栈相反,队列是一种先进先出的线性表它只允许在标的一段进行插入,而在另一端进行删除元素。这和我们日常生活中的排队是一致的,即最早入队的元素最早离开。队列中允许插入的一端叫做队尾,允许删除的一端的叫队头。2.队列的基本操作:1.入队2.出队3.队列初始化,判空以及获取出队元素3.代码实现一.链队列(队列用链表表示和实现)#include#includetypedefstructqnode{
- Ubuntu22.04系统安装及配置
乌托邦的逃亡者
Ubuntulinux运维服务器ubuntu
文章目录一、选择“安装”二、选择“语言”三、安装器更新四、键盘布局五、选择安装类型六、网络配置七、代理设置八、镜像地址九、磁盘划分十、设置用户名、主机名、登录密码十一、升级到UbuntuPro十二、SSH设置十三、选装软件包十四、开始安装进程十五、配置静态IP十六、设置时区十七、包管理工具十八、防火墙设置十九、修改linux参数(调大最大文件句柄数)二十、如何使用root账号二十一、安装JDK二十
- 新手必看——ctf六大题型介绍及六大题型解析&举例解题
沛哥网络安全
web安全学习安全udp网络协议
CTF(CaptureTheFlag)介绍与六大题型解析一、什么是CTF?CTF(CaptureTheFlag),意为“夺旗赛”,是一种信息安全竞赛形式,广泛应用于网络安全领域。CTF竞赛通过模拟现实中的网络安全攻防战,让参赛者以攻防对抗的形式,利用各种信息安全技术进行解决一系列安全问题,最终获得“旗帜(Flag)”来获得积分。CTF赛事一般分为两种形式:Jeopardy(解题模式):参赛者通过解
- 标贝科技参编国内首个AIGC大模型功能测试标准
标贝科技
科技AIGC功能测试
近日,由山东省人工智能协会、青岛市人工智能产业协会携手发布了国内首个针对生成式人工智能(AIGC)大模型测试的团体标准——《生成式人工智能(AIGC)大模型功能测试指标体系》。标贝科技作为行业领先的AI技术创新及大模型应用企业受邀参与了标准的编制。该标准的发布对于规范大模型的研发和应用具有重要意义,为人工智能产业的健康、快速发展注入了新的活力。AIGC大模型作为人工智能从专业智能走向通用智能的关键
- 【大模型】硅基流动对接DeepSeek使用详解
小码农叔叔
AI大模型实战与应用DeepSeek使用DeepSeek使用总结硅基流动使用DeepSeek代码集成DeepSeekDeepSeek
目录一、前言二、硅基流动介绍2.1硅基流动平台介绍2.1.1平台是做什么的2.2主要特点与功能2.2.1适用场景三、硅基流动快速使用3.1账户注册3.2token获取3.2.1获取token技巧四、Cherry-Studio对接DeepSeek4.1获取Cherry-Studio4.2Cherry-Studio配置DeepSeek4.2.1设置api密钥4.2.2模型检查4.3与DeepSeek对
- 【PyCharm的详细安装教程】
局外人_Jia
pycharmidepythonwindowslinuxmac
PyCharm的详细安装教程,涵盖Windows、macOS和Linux三大平台:1.下载PyCharm访问PyCharm官网。选择适合的版本:Community版:免费,适合Python基础开发。Professional版:付费,支持Web开发、数据库工具等高级功能。点击“Download”按钮下载安装包。2.Windows安装教程步骤1:运行安装程序双击下载的.exe文件。选择安装路径(默认路
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比