- Springboot+vue.js+协同过滤推荐+余弦相似度算法实现新闻推荐系统
计算机程序优异哥
针对海量的新闻资讯数据,如何快速的根据用户的检索需要,完成符合用户阅读需求的新闻资讯推荐?本篇文章主要采用余弦相似度及基于用户协同过滤算法实现新闻推荐,通过余弦相似度算法完成针对不同新闻数据之间的相似性计算,实现分类标签。通过协同过滤算法发现具备相似阅读习惯的用户,展开个性化推荐。本次新闻推荐系统:主要包含技术:springboot,mybatis,mysql,javascript,vue.js,
- 基于用户的协同过滤以及ALS的混合召回算法
山水阳泉曲
算法机器学习人工智能矩阵python推荐算法线性代数
文章目录需求基于用户的协同过滤基本步骤相似度计算代码示例(使用余弦相似度)基于用户的协同过滤的缺点实际推荐系统中的替代方案ALSuserBaseCF+ALS混合推荐设计代码说明需求要将基于用户的协同过滤(User-BasedCollaborativeFiltering,UBCF)与交替最小二乘(AlternatingLeastSquares,ALS)结合起来,设计一个混合推荐系统。这种系统可以利用
- 余弦相似度算法和IntelliScraper
python人工智能
场景当时,我说要开发一个HSipder,开发完毕的时候,我发现不太智能,通过正则表达式拿过来的相似数据实际上也不太ok,但是后面我在接触机器学习的时候听闻了余弦相似度算法,当时用他爬了一些网页,结果是很ok的,于是我把HSipder项目拆了拆加入了余弦算法,我发现准确度上去了一个维度。很Nice,随机我将其发布到pypi库,并且开源,命名为IntelliScraper,意思是智能爬,也有人工智能的
- NLP_Bag-Of-Words(词袋模型)
you_are_my_sunshine*
NLP自然语言处理人工智能
文章目录词袋模型用词袋模型计算文本相似度1.构建实验语料库2.给句子分词3.创建词汇表4.生成词袋表示5.计算余弦相似度6.可视化余弦相似度词袋模型小结词袋模型词袋模型是一种简单的文本表示方法,也是自然语言处理的一个经典模型。它将文本中的词看作一个个独立的个体,不考虑它们在句子中的顺序,只关心每个词出现的频次,如下图所示用词袋模型计算文本相似度1.构建实验语料库#构建一个数据集corpus=["我
- 数据挖掘——考试复习
hzx99
考试复习数据挖掘考试复习
数据挖掘——考试复习考点填空欧几里得距离余弦相似度简单匹配系数Jaccard系数数据集的ClassficationError数据集的Gini值召回率和精度问答支持向量机的“最大边缘”原理软边缘支持向量机的基本工作原理非线性支持向量机的基本工作原理计算朴素贝叶斯分类ID3决策树、计算数据集的熵、计算划分的期望信息、信息增益计算欧式距离、KNN分类给定事务数据集、求频繁K项集,求指定的关联规则的支持度
- 推荐系统算法实践 - P2 推荐系统的召回算法
左心Chris
4协同过滤-基于行为协同过滤算法协同过滤算法是什么?基于跟你类似的用户喜欢的东西,你也会喜欢基于跟你喜欢的东西类似的物品,你也会喜欢怎么体现类似的这个情景?同现相似度,欧几里得距离,皮尔逊相关系数,余弦相似度皮尔逊相关系数大小跟紧密程度的关系?皮尔逊相关系数[-1,1],绝对值越接近于1,越线性相关什么时候使用向量乘法,什么时候选择余弦相似度?如果向量的长度本身对相似有影响,建议使用内积,比如评分
- 我用Java写了一个协调过滤算法案例
还得是你大哥
java服务端java算法开发语言
协调过滤算法(CollaborativeFiltering)是一种基于用户行为数据的推荐算法。这里给出一个简单的Java实现案例,使用余弦相似度计算物品之间的相似度,并根据相似度为用户推荐物品。importjava.util.*;publicclassCollaborativeFiltering{publicstaticvoidmain(String[]args){//用户评分数据Map>user
- 【ChatGPT】文本向量化与余弦相似度:揭开文本处理的神秘面纱
魔道不误砍柴功
AI大模型chatgpt
1、引言在这个数字化的时代,我们每天都会面对大量的文本信息,从社交媒体到新闻报道,文本无处不在。但是,计算机要如何理解和处理这些文字呢?本文将为大家揭开其中的一些奥秘,详细解释文本向量化的概念,以及通过余弦相似度如何计算文本之间的相似度。说白了,就是把文字、图片或其他东西变成一串数字,然后通过计算这些数字的距离来找相似的东西。这样做有啥好处呢?能够让搜索更快、更准确,而且在很多地方都能派上用场。2
- DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)
毕设阿力
算法
DeepSORT算法是一种用于目标跟踪的算法,它可以对车辆和行人进行跟踪计数,并且可以检测是否存在道路违规行为。该算法采用深度学习技术来提取特征,并使用卡尔曼滤波器来估计物体的速度和位置。DeepSORT算法通过首先使用目标检测算法来识别出场景中的车辆和行人,然后使用卷积神经网络(CNN)来提取物体的特征。接着,该算法使用余弦相似度来计算物体之间的相似度,并使用匈牙利算法来匹配跟踪器和检测器之间的
- 【Python3】计算两个字符串的相似度
言之。
python
在Python中,你可以使用不同的算法和库来计算两个字符串的相似度。这里介绍两种常用的方法:编辑距离和余弦相似度。1.编辑距离(EditDistance):编辑距离是衡量两个字符串之间的差异程度的一种度量方式。在Python中,可以使用编辑距离算法来计算两个字符串之间的相似度。可以使用python-Levenshtein库来实现。首先,你需要安装python-Levenshtein库:pipins
- 文本相似度计算
Logan_addoil
python大数据学习之旅python
相似度度量:计算个体间相似度相似度值越小,距离越大,相似度越大,距离越小余弦相似度:一个向量空间中两个向量夹角的余弦值作为衡量两个个体之间差异的大小余弦值接近1,夹角趋于0,表明两个向量越相似例如:文本相似度计算1.找出两篇文章的关键词2.每篇文章各取出若干关键词,合并成一个集合,计算每篇文章对于这个词的词频3.生成两篇文章各自的词频向量4.计算两个向量的余弦相似度,值越大就表示越相似import
- 余弦距离和余弦相似度的区别
weixin_44040169
算法机器学习人工智能
余弦相似度,就是计算两个向量间的夹角的余弦值:cosθ,取值范围[-1,1]。值越大,相似度越高余弦距离就是用1减去这个获得的余弦相似度:1-cosθ,取值范围[0,2]。值越大,距离越远。余弦距离和欧氏距离一样都可以用来衡量向量距离:都是值越大,距离越远。
- 推荐系统算法 协同过滤算法详解(一)杰卡德相似度和余弦相似度使用、缺陷
A乐神
算法算法
目录前言协同过滤算法(简称CF)杰卡德相似度公式:示例缺陷余弦相似度算法:例子缺陷以及和皮尔森系数对比总结前言理解吧同胞们,实在是没办发把wps公式复制到文章上,只能截图了,我服了!!!协同过滤算法(简称CF)在早期,协同过滤几乎等同于推荐系统。主要的功能是预测和推荐。协同过滤推荐算法分为两类,分别是:(英文userCF)基于用户的协同过滤算法(相似的用户可能喜欢相同物品);这个一般适合推荐新闻和
- OpenCV书签 #余弦相似度的原理与相似图片/相似文件搜索实验
有时有味
OpenCV算法Pythonopencv余弦相似度相似文件搜索图搜索算法以图搜图pythonnumpy
1.介绍余弦相似度(CosineSimilarity),又称为余弦相似性,是通过计算两个向量的夹角余弦值来评估他们的相似度。余弦相似度仅仅与向量的指向方向相关,与向量的长度无关,它将向量根据坐标值绘制到向量空间中,如最常见的二维空间。因此,万物皆向量,我们可以使用余弦相似度来进行相似图片查找、相似文件搜索等工作。两个向量间的余弦值可以通过使用欧几里得点积公式求出:给定两个属性向量,A和B,其余弦相
- 神经网络中的损失函数(下)——分类任务
liuzibujian
神经网络分类人工智能机器学习损失函数
神经网络中的损失函数前言分类任务中的损失函数交叉熵最大似然信息论信息量信息熵最短平均编码长度交叉熵KL散度余弦相似度损失函数总结前言上文主要介绍了回归任务中常用的几个损失函数,本文则主要介绍分类任务中的损失函数。分类任务中的损失函数为了与回归任务的损失函数形式相统一,此处仅考虑某一条数据的损失函数。在分类任务中,假设一共有nnn个类别。该数据的真实值YYY一般用独热编码(只有某一位为1,其余都是0
- 机器学习 - 余弦相似度算法和IntelliScraper
北堂飘霜
机器学习算法人工智能
场景当时,我说要开发一个HSipder,开发完毕的时候,我发现不太智能,通过正则表达式拿过来的相似数据实际上也不太ok,但是后面我在接触机器学习的时候听闻了余弦相似度算法,当时用他爬了一些网页,结果是很ok的,于是我把HSipder项目拆了拆加入了余弦算法,我发现准确度上去了一个维度。很Nice,随机我将其发布到pypi库,并且开源,命名为IntelliScraper,意思是智能爬,也有人工智能的
- NLP-文本处理:实体消歧/词义消歧(Entity Disambiguiation / Word Sense Disambiguation)
u013250861
#NLP基础/句法语义分析
一、简单方法1、提前构建好实体库(描述库)2、将文本转为向量将含有待消歧实体的文本句子AAA(实体前后各取10~20个单词),实体库中该实体的各种描述的句子(A1,A2,...A_1,A_2,...A1,A2,...)都转为向量,然后通过余弦相似度计算cos(A,A1),cos(A,A2),...cos(A,A_1),cos(A,A_2),...cos(A,A1),cos(A,A2),...,最后
- 余弦相似度的计算以及公式
爱打网球的小哥哥一枚吖
信息检索信息检索
公式:思想:余弦相似度的思想是通过计算两个向量之间的余弦值来衡量它们的相似程度。如果两个向量之间的夹角越小,它们的余弦值就越接近1,也就意味着它们越相似。而如果它们的夹角越大,余弦值就越接近0,也就意味着它们越不相似。因此,余弦相似度常用于文本分类、推荐系统、图像处理等领域,以评估两个向量之间的相似程度。计算:引用:余弦相似度计算_计算两个向量的余弦相似度-CSDN博客
- LangChain 65 深入理解LangChain 表达式语言28 余弦相似度Router Moderation LangChain Expression Language (LCEL)
AI架构师易筋
LLM-LargeLanguageModelslangchainchatgpt人工智能python
LangChain系列文章LangChain50深入理解LangChain表达式语言十三自定义pipeline函数LangChainExpressionLanguage(LCEL)LangChain51深入理解LangChain表达式语言十四自动修复配置RunnableConfigLangChainExpressionLanguage(LCEL)LangChain52深入理解LangChain表达
- 基于内容推荐(TF-IDF)的新闻博客系统-期末项目/毕业设计
Please Sit Down
项目毕业设计Javajava
技术栈JavaEEEclipseMysql-5.6SpringSpringMVCMybatisJavaScriptEasyUITF-IDF算法推荐算法基于内容推荐算法:TF-IDF基本原理:根据用户的浏览行为,获得用户的兴趣偏好度,为用户推荐跟他的兴趣偏好相似的内容,采用词频-逆文档词频来提取文章关键字,根据关键词词频向量计算相似度(余弦相似度)来进行内容推荐。(1)方法描述在新闻领域,推荐系统将
- 机器学习 -- 余弦相似度
北堂飘霜
pythonAI机器学习人工智能
场景我有一个页面如下(随便找的):我的需求是拿到所有回答的链接,再或者我在找房子网上,爬到所有的房产信息,我们并不想做过多的处理,我只要告诉程序,请帮我爬一个类似xxx相似度为0.5的就可以了,然后我自会写一小段代码去给数据清洗,这就免去了每次不同网站写不同的一套脚本的痛苦。这里就用到了余弦相似度。余弦相似度余弦相似度,又称为余弦相似性,是通过测量两个向量的夹角的余弦值来度量它们之间的相似性。两个
- 【机器学习:余弦相似度 】机器学习中余弦相似度的理解和应用
jcfszxc
机器学习知识专栏机器学习人工智能
【机器学习:余弦相似度】机器学习中余弦相似度的理解和应用定义余弦距离角距离和相似度L2L_2L2归一化欧几里得距离Otsuka–Ochiai系数属性余弦相似度的三角不等式软余弦测量应用示例扩展GPT图像示例在数据分析领域,余弦相似度用于度量内积空间中两个非零向量之间的相似性。它等于这两个向量间夹角的余弦值,即向量点积除以它们长度的乘积。因此,余弦相似度与向量的大小无关,仅与它们的夹角有关。余弦相似
- 词向量技术 | SkipGram词向量模型的训练以及词的余弦相似度计算
源于花海
自然语言处理人工智能自然语言处理nlp
Hi,大家好啊!词向量是表示自然语言里单词的一种方法,词向量技术在自然语言处理中也有着举足轻重的作用,通过这种方法,实现把自然语言计算转换为向量计算。一、词向量训练1.词向量计算简介在自然语言处理任务中,词向量是表示自然语言里单词的一种方法,即把每个词都表示为一个N维空间内的点,即一个高维空间内的向量。通过这种方法,实现把自然语言计算转换为向量计算。如图1所示的词向量计算任务中,先把每个词(如qu
- 余弦相似度匹配
步入繁华
今天的产品涉及到一个相似度匹配算法,上网查了这类算法很多。跟研发讨论,研发推荐使用余弦值相似度算法。余弦值相似度算法是个什么算法?余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。余弦值越接近1,也就是两个向量越相似,这就叫"余弦相似性",余弦值越接近0,也就是两个向量越不相似,也就是这两个字符串越不相似。是不是更加云里雾里了?没关系,我数学这么差的
- 数据挖掘中的数据属性特点、描述性统计度量与相似度计算
轩Scott
数据挖掘人工智能
目录1.引言2.数据挖掘中的数据属性2.1数值属性2.2标称属性2.3有序属性2.4无序属性3.描述性统计度量3.1中心趋势度量3.2离散程度度量3.3分布形状度量4.相似度计算4.1欧氏距离4.2余弦相似度4.3Jaccard5.数据挖掘中的案例应用5.1电商推荐系统5.2医疗诊断5.3金融风险预测6.挑战与未来发展7.结论1.引言数据挖掘是通过发现隐藏在大量数据背后的模式、关系和趋势,为决策提
- 2023下半年的总结
从零开始的奋豆
机器学习人工智能scikit-learn目标检测深度学习
我从八月下旬开始写的,到现在差不多有半年了,总结一下吧!1.计算机视觉在计算机视觉方面,想必两个有名的深度学习框架(TensorFlow和PyTorch)大家都很清楚吧,以及OpenCV库。对于人脸识别,可以采用了基于深度学习的特征提取方法,通过训练卷积神经网络(CNN)来提取人脸特征,并使用余弦相似度进行特征匹配,实现人脸的快速识别。在物体跟踪方面,可以采用了基于目标检测的方法,通过训练YOLO
- 余弦相似度算法
xwhking
算法
余弦相似度算法是什么余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。怎么用利用n维向量的计算公式我们知道二维余弦计算公式为:拓展至n维应用实例【下面举一个例子,来说明余弦计算文本相似度】举一个例子来说明,用上述理论计算文本的相似性。为了简单起见,先从句子着手。句子A:
- Python使用余弦相似度比较两个图片
Dxy1239310216
图像处理Pythonpython开发语言图像处理
为了使用余弦相似度来找到与样例图片相似的图片,我们需要先进行一些预处理,然后计算每两张图片之间的余弦相似度。以下是一个简单的实现:读取样例图片和目标文件夹中的所有图片。对每张图片进行预处理,例如灰度化、降噪等。计算每张图片与样例图片的余弦相似度。找到与样例图片最相似的图片并复制到指定目录。首先,确保你已经安装了必要的库:pipinstallopencv-pythonnumpyPillowsciki
- 大模型系列:OpenAI使用技巧_自定义文本向量化embeding
愤斗的橘子
#OpenAI数据挖掘语言模型
文章目录0.Imports1.输入2.加载和处理输入数据3.将数据分成训练和测试集4.生成合成的负样本5.计算嵌入和余弦相似度6.绘制余弦相似度的分布图7.使用提供的训练数据优化矩阵。8.绘制训练期间找到的最佳矩阵的前后对比图,展示结果本笔记本演示了一种将OpenAI嵌入定制为特定任务的方法。输入是以[text_1,text_2,label]形式的训练数据,其中label为+1表示这些句子对相似,
- 五种常用距离的代码实现:欧式距离、曼哈顿距离、闵可夫斯基距离、余弦相似度、杰卡德距离
阿_旭
算法与数据结构向量距离计算
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc