Tensorflow 模型的保存和导入

我们用上一节读取tfrecord文件得到的数据来建立一个简单的二分类神经网络。进而介绍模型的保存和导入方法

# 简单的二分类神经网络:单隐藏层
# 每个样本有5个features
# 隐藏层有10个神经元,一个输出




# -*- coding: UTF-8 -*-
#!/usr/bin/python3

# Env: python3.6

import tensorflow as tf
import numpy as np
import os

# path
data_filename = 'data/data_train.txt'
size = (10000, 5)
tfrecord_path = 'data/test_data.tfrecord'
# tfrecord_path2 = 'data/test_data2.tfrecord'
# generate data 10000*5, label: 0 or 1
# generate tfrecord named test_data.tfrecord.
def generate_data(data_filename = data_filename, size=size):
    if not os.path.exists(data_filename):
        np.random.seed(9)
        x_data = np.random.randint(0, 10, size = size)
        y1_data = np.ones((size[0]//2, 1), int)
        y2_data = np.zeros((size[0]//2, 1), int)
        y_data = np.append(y1_data, y2_data)
        np.random.shuffle(y_data)

        # stitching together x and y in one file
        xy_data = str('')
        for xy_row in range(len(x_data)):
            x_str = str('')
            for xy_col in range(len(x_data[0])):
                if not xy_col == (len(x_data[0])-1):
                    x_str =x_str+str(x_data[xy_row, xy_col])+' '
                else:
                    x_str = x_str + str(x_data[xy_row, xy_col])
            y_str = str(y_data[xy_row])
            xy_data = xy_data+(x_str+'/'+y_str + '\n')
        #print(xy_data[1])

        # write to txt
        write_txt = open(data_filename, 'w')
        write_txt.write(xy_data)
        write_txt.close()
    return

# obtain data from txt
# every line of data is just as follow: 1 2 3 4 5/1. train data: 1 2 3 4 5, label: 1
def txt_to_tfrecord(txt_filename = data_filename, tfrecord_path = tfrecord_path):
    # 第一步:生成TFRecord Writer
    writer = tf.python_io.TFRecordWriter(tfrecord_path)

    # 第二步:读取TXT数据,并分割出样本数据和标签
    file = open(txt_filename)
    for data_line in file.readlines(): # 每一行
        data_line = data_line.strip('\n') # 去掉换行符
        sample = []
        spls = data_line.split('/', 1)[0]# 样本
        for m in spls.split(' '):
            sample.append(int(m))
        label = data_line.split('/', 1)[1]# 标签
        label = int(label)
        print('sample:', sample, 'labels:', label)

        # 第三步: 建立feature字典,tf.train.Feature()对单一数据编码成feature
        feature = {'sample': tf.train.Feature(int64_list=tf.train.Int64List(value=sample)),
                   'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[label]))}
        # 第四步:可以理解为将内层多个feature的字典数据再编码,集成为features
        features = tf.train.Features(feature = feature)
        # 第五步:将features数据封装成特定的协议格式
        example = tf.train.Example(features=features)
        # 第六步:将example数据序列化为字符串
        Serialized = example.SerializeToString()
        # 第七步:将序列化的字符串数据写入协议缓冲区
        writer.write(Serialized)
    # 记得关闭writer和open file的操作
    writer.close()
    file.close()
    return
#txt_to_tfrecord(data_filename, tfrecord_path2)

#  read tfrecord
def _parse_function(example_proto):
    dics = {  # 这里没用default_value,随后的都是None
        'sample': tf.FixedLenFeature([5], tf.int64),  # 如果不是标量,一定要在这里说明数组的长度
        'label': tf.FixedLenFeature([], tf.int64)}
    # 把序列化样本和解析字典送入函数里得到解析的样本
    parsed_example = tf.parse_single_example(example_proto, dics)

    parsed_example['sample'] = tf.cast(parsed_example['sample'], tf.float32)
    parsed_example['label'] = tf.cast(parsed_example['label'], tf.float32)

    # 返回所有feature
    return parsed_example

def read_dataset(tfrecord_path = tfrecord_path):
    # 声明阅读器
    dataset = tf.data.TFRecordDataset(tfrecord_path)
    # 建立解析函数
    new_dataset = dataset.map(_parse_function)
    # 打乱样本顺序
    shuffle_dataset = new_dataset.shuffle(buffer_size=20000)
    # batch输出
    batch_dataset = shuffle_dataset.batch(2)
    # 建立迭代器
    iterator = batch_dataset.make_one_shot_iterator()
    # 获得下一个样本
    next_element = iterator.get_next()
    x_samples = next_element['sample']
    y_labels = next_element['label']
    return x_samples, y_labels

def weight_bias_variable(weight_shape, bias_shape):
    weight = tf.get_variable('weight', weight_shape, initializer=tf.random_normal_initializer(mean=0, stddev=1))
    bias = tf.get_variable('bias', bias_shape, initializer=tf.random_normal_initializer(mean=0, stddev=1))
    return weight, bias

# neural network:
# input layer: 5 features with on sample
# one hidden layer: 10 neuron
# output: y_out

################      fetch data    ####################
with tf.variable_scope('input_data'):
    x_samples, y_labels = read_dataset()

with tf.variable_scope('hidden_layer1', reuse=tf.AUTO_REUSE):
    w1, b1 = weight_bias_variable(weight_shape=[5, 10], bias_shape=[10])
    y_hidden = tf.nn.relu(tf.matmul(x_samples, w1) + b1)
    tf.summary.histogram('w1', w1)
    tf.summary.histogram('b1', b1)

with tf.variable_scope('output_layer', reuse=tf.AUTO_REUSE):
    w2, b2 = weight_bias_variable(weight_shape=[10, 1], bias_shape=[1])
    y_out = tf.matmul(y_hidden, w2) + b2
    y_out = tf.reshape(y_out, [-1])
    tf.summary.histogram('w2', w2)
    tf.summary.histogram('b2', b2)
with tf.variable_scope('loss_function'):
    # ################     Loss Function
    #  这里的sigmoid是对y_out的激活函数
    loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=y_out, labels=y_labels, name=None)
    loss_mean = tf.reduce_mean(loss, 0)
    tf.summary.scalar('loss_mean', loss_mean)

    ################## BackPropagation
    # 创建基于梯度下降算法的Optimizer
    optimizer = tf.train.GradientDescentOptimizer(0.01)
    # 添加操作节点,用于最小化loss,并更新var_list
    # 该函数是简单的合并了compute_gradients()与apply_gradients()函数
    # 返回为一个优化更新后的var_list
    train = optimizer.minimize(loss_mean)
save_path = 'data/save/b2.txt'
with tf.Session() as sess:
    init = tf.global_variables_initializer()
    sess.run(init)
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)
    # 建立tensorbord
    merged = tf.summary.merge_all()
    writer = tf.summary.FileWriter('data/tfboard', sess.graph)

    saver = tf.train.Saver()
    for i in range(2000):
        sess.run(train)
        summary = sess.run(merged)
        writer.add_summary(summary, i)

        if i % 1000 == 0:
            print(' ############### step = %d   ############     ' %i)
            print('b2: ', sess.run(b2))
            # 用官网介绍的checkpoint方式保存模型
            # 创建saver对象,默认max_to_keep=5,保存最近5次的模型。
            saver.save(sess, 'data/tmp/model', global_step=1000) # 保存第1000步的模型

    # 将变量保存到文件(这里也可以创建字典,将所有变量写成tfrecord文件
    # 用sess.run就是将tensor数据转为python数据,然后进行保存
    b2_save = sess.run(b2)
    print('TXT b2 save:', b2_save)
    np.savetxt(save_path, b2_save)

    writer.close()

    coord.request_stop()
    coord.join(threads)

##### checkpoint 恢复模型


# 为了区分,我们再建立一个session

with tf.Session() as sess:
    init = tf.global_variables_initializer()
    sess.run(init)
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)

    # 恢复模型,这是一个 protocol buffer保存了完整的Tensorflow图,即所有变量、操作和集合等。拥有一个.meta
    last_ckpt = saver.last_checkpoints  # 得到保存模型的路径
    saver_restore = tf.train.import_meta_graph(os.path.join(last_ckpt[0] + '.meta'))
    # 用 checkpoint 恢复模型参数
    saver_restore.restore(sess, last_ckpt[0]) # method 1
    print('methond1:ckpt: ', sess.run(b2))  # 要知道参数名
    saver.restore(sess, last_ckpt[0])  # method 2
    print('methond2:ckpt: ', sess.run(b2))  # 要知道参数名

    # 读取TXT文档恢复参数  # method 3
    b2_restore = np.loadtxt(save_path)
    b2_restore = tf.cast(b2_restore, tf.float32)  # numpy默认float64而不是float32,而TF中默认时float32,才能用TF.RESHAPE()
    b2_restore = tf.reshape(b2_restore, [-1])  # b2是标量,shape为[]。要求tensor时必须给标量扩维度
    print('TXT b2_restore:', sess.run(b2.assign(b2_restore)))
    # 或者 写成:
    # print('TXT b2_restore:', sess.run(tf.assign(b2, b2_restore)))
    print(sess.run(b2))

tf.summary()可以利用Tensorboard将网络可视化,在终端输入summary的路径:

$ tensorboard --logdir=/Users/username/PycharmProjects/firsttensorflow/readtf/data/tfboard

终端输出为:TensorBoard 1.9.0 at http://pc-171-10-100-190.cm.vtr.net:6006 (Press CTRL+C to quit)

我们需要在网页中输入:http://localhost:6006
tensorboard默认是在scalars(标量)界面:

Tensorflow 模型的保存和导入_第1张图片

这里显示的是损失函数在2000次训练过程中的变化趋势。(因为是随机生成的数据,这里网络性能并没有考虑)

切换到GRAPHS界面,可以看到网络结构:
Tensorflow 模型的保存和导入_第2张图片

可以双击每个scope查看里面的tensor flow和operation。

传送:

  1. 神经网络激活函数
  2. tensorflow中常用的神将网络函数
  3. 梯度下降算法
  4. checkpoint方法保存加载模型的Blog

你可能感兴趣的:(Tensorflow 模型的保存和导入)