- 2023-08-20
Leslie91
活在当下和活在未来并不对立,就像确认攀登一坐高山,设定自己的目标和计划,一路前行。适当停留领略周边风景稍做调整休息,继续登高。活在未来的思维逻辑让我有时间紧迫感,训练主动前瞻行思维和坚定执行力;活在当下是让我体验世界的一切美好和不经意收获的感动。用贝叶斯定律从新修正自己的观点:用30%时间体验当下人世间酸甜苦辣,因为我活着;用70%时间去活在未来,因为前方有更广阔的视野和更多的收获,每时每刻都要按
- 概率图模型(PGM)综述
医学影像处理
概率图模型概率图模型综述
RefLink:http://www.sigvc.org/bbs/thread-728-1-1.htmlGraphicalModel的基本类型基本的GraphicalModel可以大致分为两个类别:贝叶斯网络(BayesianNetwork)和马尔可夫随机场(MarkovRandomField)。它们的主要区别在于采用不同类型的图来表达变量之间的关系:贝叶斯网络采用有向无环图(DirectedAc
- 潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)—无监督学习方法、概率模型、生成模型、线性模型、非参数化模型、贝叶斯学习、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习潜在狄利克雷分配LDA
定义输入:单词集合W={ω1,⋯ ,ωv,⋯ ,ωV},其中ωv是第v个单词,v=1,2,⋯ ,V,V是单词第个数。单词集合W=\{\omega_1,\cdots,\omega_v,\cdots,\omega_V\},其中\omega_v是第v个单词,v=1,2,\cdots,V,V是单词第个数。单词集合W={ω1,⋯,ωv,⋯,ωV},其中ωv是第v个单词,v=1,2,⋯,V,V是单词第个数。文
- 分类算法可视化方法
dundunmm
数据挖掘分类数据挖掘人工智能可视化
可视化方法可以用于帮助理解分类算法的决策边界、性能和在不同数据集上的行为。下面列举几个常见的可视化方法。1.决策边界可视化这种方法用于可视化不同分类算法在二维特征空间中如何分隔不同类别。对于理解决策树、支持向量机(SVM)、逻辑回归和k近邻(k-NN)等模型的行为非常有用。importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasets
- 【机器学习】朴素贝叶斯
可口的冰可乐
机器学习机器学习概率论
3.朴素贝叶斯素贝叶斯算法(NaiveBayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。优点:速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝叶斯仍然表现良好
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 【机器学习】近似推断的基本概念以及变分贝叶斯的基本概念
Lossya
机器学习人工智能python贝叶斯网络变分贝叶斯近似推断
引言近似推断是处理大规模或复杂概率图模型时常用的一种方法,特别是在精确推断变得不可行或不实际的情况下文章目录引言一、近似推断1.1常见的近似推断方法1.1.1采样方法(SamplingMethods)1.1.1.1马尔可夫链蒙特卡洛(MCMC)1.1.1.2重要性采样(ImportanceSampling)1.1.1.3蒙特卡洛模拟(MonteCarloSimulation)1.1.2变分推断(V
- 【统计学习方法读书笔记】(四)朴素贝叶斯法
Y.G Bingo
统计学习方法人工智能统计学习概率概率论
终于到了贝叶斯估计这章了,贝叶斯估计在我心中一直是很重要的地位,不过发现书中只用了不到10页介绍这一章,深度内容后,发现贝叶斯估计的基础公式确实不多,但是由于正态分布在生活中的普遍性,贝叶斯估计才应用的非常多吧!默认输入变量用XXX表示,输出变量用YYY表示概率公式描述:P(X=x)P(X=x)P(X=x):表示当X=xX=xX=x时的概率P(X=x∣Y=ck)P(X=x|Y=c_k)P(X=x∣
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 【机器学习】朴素贝叶斯网络的基本概念以及朴素贝叶斯网络在python中的实例
Lossya
机器学习python人工智能算法朴素贝叶斯
引言文章目录引言一、朴素贝叶斯网络1.1基本概念1.1.1节点1.1.2边(Edges)1.1.3条件独立性1.2特点1.2.1结构简单1.2.2易于理解和实现1.2.3计算效率高1.3应用1.4数学表示1.5局限性二、朴素贝叶斯网络在python中的实例2.1实例背景2.2实现步骤2.3python代码2.4代码解释三、概率推断在医疗领域中的使用3.1概率推断在医疗领域的使用3.2自动化推断的优
- 01-30
姬汉斯
今天看的是关于文档识别和分类的处理案例。利用多项式贝叶斯公式计算TF-IDF值,以此计算出文档中的词频,文档频率等数据属性,TFIDFVectorizer类用于进行整理,NTLK包进行标注处理,计算文档中各个字符的权重,通过分类器进行分类处理。Sklearn在其中依然有巨大作用,还在熟悉其特性
- python 连续比较_python实现连续变量最优分箱详解--CART算法
weixin_39834788
python连续比较
关于变量分箱主要分为两大类:有监督型和无监督型对应的分箱方法:A.无监督:(1)等宽(2)等频(3)聚类B.有监督:(1)卡方分箱法(ChiMerge)(2)ID3、C4.5、CART等单变量决策树算法(3)信用评分建模的IV最大化分箱等本篇使用python,基于CART算法对连续变量进行最优分箱由于CART是决策树分类算法,所以相当于是单变量决策树分类。简单介绍下理论:CART是二叉树,每次仅进
- 11.4 看不懂就慢慢看啊
反复练习的阿离很笨吧
记得组合数学正交拉丁方从0开始!突然觉得老师说得很有道理,演化计算里活得最好的,不是最优秀的但也不是最差的,是最能适应环境的,别人怎么做,他就怎么做。动态规划,运筹学贝叶斯是生成学习算法,生成一个概率模型判别学习算法高斯判别分析/**NB.java*Copyright2005LiangxiaoJiang*/packageweka.classifiers.gla;importweka.core.*;
- 叶斯神经网络(BNN)在训练过程中损失函数不收敛或跳动剧烈可能是由多种因素
zhangfeng1133
算法人工智能机器学习
贝叶斯神经网络(BNN)在训练过程中损失函数不收敛或跳动剧烈可能是由多种因素引起的,以下是一些可能的原因和相应的解决方案:学习率设置不当:过高的学习率可能导致损失函数在优化过程中震荡不收敛,而过低的学习率则可能导致收敛速度过慢。可以尝试使用学习率衰减策略,或者根据任务和数据集的特点设置合适的学习率。数据问题:数据集中的噪声、异常值或不均匀的分布可能会导致模型的损失函数上升。此外,如果训练数据和验证
- 人工智能与机器学习原理精解【17】
叶绿先锋
基础数学与应用数学人工智能机器学习概率论
文章目录贝叶斯贝叶斯定理的公式推导一、条件概率的定义二、联合概率的分解三、贝叶斯定理的推导四、全概率公式的应用五、总结全概率公式推导一、全概率公式的定义二、全概率公式的推导三、全概率公式的应用贝叶斯定理的原理一、基本原理二、核心概念三、数学表达式四、原理应用五、原理特点朴素贝叶斯定理一、贝叶斯定理基础二、朴素贝叶斯的原理三、朴素贝叶斯的特点朴素贝叶斯公式一、贝叶斯定理二、特征独立性假设三、朴素贝叶
- 自然语言处理系列五十一》文本分类算法》Python快速文本分类器FastText
陈敬雷-充电了么-CEO兼CTO
算法人工智能大数据自然语言处理分类pythonchatgpt人工智能ai机器学习
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理FastText和Word2vec的区别FastText代码实战总结自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理自然语言处理(N
- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- 遗传进化算法进行高效特征选择
广东数字化转型
算法人工智能
在构建机器学习模型时,特征选择是一个关键的预处理步骤。使用全部特征往往会导致过拟合、增加计算复杂度等问题。因此,我们需要从原始特征集中选择一个最优子集,以提高模型的泛化性能和效率。特征选择的目标是找到一个二元掩码向量,对应每个特征的保留(1)或剔除(0)。例如,对于10个特征,这个掩码向量可能是[1,0,1,1,0,0,1,0,1,0]。我们需要通过某种优化方法,寻找一个使目标函数(如模型的贝叶斯
- Logistic分类算法原理及Python实践
doublexiao79
数据分析与挖掘分类python数据挖掘
一、Logistic分类算法原理Logistic分类算法,也称为逻辑回归(LogisticRegression),是机器学习中的一种经典分类算法,主要用于解决二分类问题。其原理基于线性回归和逻辑函数(Sigmoid函数)的组合,能够将输入特征的线性组合映射到一个概率范围内,从而进行分类预测。以下是Logistic分类算法的主要原理:1.线性组合首先,对于输入的n个特征,我们将其表示为一个n维的列向
- python奇数平方和_平方和
weixin_39807352
python奇数平方和
平方和误差和最大后验2020-12-2119:32:19多项式曲线拟合问题中的最大后验与最小化正则和平方和误差之间的关系简单证明多项式回归的最大后验等价于最小正则化和平方和误差;主要内容:多项式回归高斯分布贝叶斯定理对数函数计算1.简单回顾一下多项式回归y组合模型方法2020-12-0813:01:57不同的定性预测模型方法或定量预测模型方法各有其优点和缺点,它们之间并不是相互排斥的,而是相互联系
- 【概率论】理解贝叶斯(Bayes)公式:为什么疾病检测呈阳性,得这种病的概率却不高?
seh_sjlj
概率论概率论学习数学经验分享
先说结论:因为假阳性的人数相比于真阳性太多了。具体是怎么回事呢?咱们慢慢分析。文章目录一、贝叶斯公式二、典例分析三、贝叶斯公式的本质思考(摘自教材)一、贝叶斯公式定理1(贝叶斯公式)设有事件A,BA,BA,B,P(A)>0P(A)>0P(A)>0,P(B)>0P(B)>0P(B)>0,则P(B∣A)=P(B)P(A∣B)P(A)P(B|A)=\frac{P(B)P(A|B)}{P(A)}P(B∣A
- 数学漫步——贝叶斯估计思想
罗泽坤
统计学中有两个大的学派:频率学派(也称经典学派),和贝叶斯学派总所周知统计推断是根据样本信息对总体分布或者是总体特征数进行推断,经典学派和贝叶斯学派就是通过统计推断的不同方式划分的,经典学派的统计推断是依据样本信息和总体信息来进行推断,而贝叶斯学派认为除了依据以上两种信息来进行推断以外还可以应该加上先验信息来进行统计推断。样本信息:样本信息即抽取样本观测其值所得到的信息,譬如在等到一组样本值之后可
- 自然语言处理系列五十》文本分类算法》SVM支持向量机算法原理
陈敬雷-充电了么-CEO兼CTO
算法大数据人工智能算法自然语言处理分类nlpai人工智能chatgpt
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十SVM支持向量机》算法原理SVM支持向量机》代码实战总结自然语言处理系列五十SVM支持向量机》算法原理SVM支持向量机在文本分类的应用场景中,相比其他机器学习算法有更好的效果。下面介绍其原理,并用SparkMLlib机器
- 【LSTM分类】基于贝叶斯优化卷积神经网络结合长短时记忆BO-CNN-LSTM实现柴油机故障诊断含Matlab源码
matlab科研助手
lstm分类cnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍柴油机作为重要的动力设备,其运行状态的可靠性直接影响着生产效率和安全。及时准确地诊断柴
- 【ShuQiHere】从零开始实现逻辑回归:深入理解反向传播与梯度下降
ShuQiHere
代码武士的机器学习秘传逻辑回归算法机器学习
【ShuQiHere】逻辑回归是机器学习中一个经典的分类算法,尽管它的名字中带有“回归”,但它的主要用途是处理二分类问题。逻辑回归通过一个逻辑函数(Sigmoid函数)将输入特征映射到一个概率值上,然后根据这个概率值进行分类。本文将带你从零开始一步步实现逻辑回归,并深入探讨背后的核心算法——反向传播与梯度下降。逻辑回归的数学基础逻辑回归的目标是找到一个逻辑函数,能够将输入特征映射到一个(0,1)之
- 深度学习速通系列:贝叶思&SVM
Ven%
支持向量机人工智能深度学习算法机器学习
贝叶斯(Bayesian)方法和支持向量机(SVM,SupportVectorMachine)是两种不同的机器学习算法,它们在解决分类和回归问题时有着不同的原理和应用场景贝叶斯方法:贝叶斯方法基于贝叶斯定理,这是一种利用已知信息(先验概率)来预测未知事件(后验概率)的概率方法。它通常用于分类问题,特别是当数据集较小或存在类别不平衡时。贝叶斯方法可以处理不确定性,并且可以通过增加新的数据来更新先验概
- 机器学习和深度学习·贝叶斯优化和optuna
0xMayL
#深度学习机器学习#模型评估机器学习深度学习人工智能
贝叶斯优化贝叶斯优化的思想先验:取点似然:假设分布取了n个点之后…后验:近似取得极值贝叶斯优化的数学过程在贝叶斯优化的数学过程当中,我们主要执行以下几个步骤:1定义需要估计的f(x)f(x)f(x)以及xxx的定义域2取出有限的n个xxx上的值,求解出这些xxx对应的f(x)f(x)f(x)(求解观测值)3根据有限的观测值,对函数分布进行假设(该假设被称为贝叶斯优化中的先验知识),得出该假设分布上
- Matlab实现多传感器信息融合(D-S证据推论)
冬天都会过去
D-S证据理论是对贝叶斯推理方法推广,主要是利用概率论中贝叶斯条件概率来进行的,贝叶斯条件概率需要知道先验概率。而D-S证据理论不需要知道先验概率,能够很好地表示“不确定”,被广泛用来处理不确定数据。(对来自多传感器数据的融合处理)适用于:信息融合、专家系统、情报分析、法律案件分析、多属性决策分析1、D-S证据理论知识介绍(1)四大定义基本概率分配、信任函数、似然函数、信任区间其中,函数m为识别框
- 亦菲喊你来学机器学习(14) --贝叶斯算法
方世恩
机器学习算法人工智能pythonscikit-learn
文章目录贝叶斯一、贝叶斯定理二、贝叶斯算法的核心概念三、贝叶斯算法的优点与局限优点:局限:四、构建模型训练模型测试模型总结贝叶斯贝叶斯算法(Bayesianalgorithm)是一种基于贝叶斯定理的机器学习方法,主要用于估计模型参数和进行概率推断。以下是对贝叶斯算法的详细解析:一、贝叶斯定理贝叶斯定理是概率论中的一个基本定理,它描述了条件概率之间的关系。该定理的数学表达式为:P(A∣B)=P(B)
- 每天一个数据分析题(四百九十五)- 分类算法
跟着紫枫学姐学CDA
数据分析题库数据分析分类数据挖掘
下面有关分类算法的准确率,查全率,F1值的描述,错误的是?A.准确率是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率B.查全率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率C.正确率、查全率和F值取值都在0和1之间,数值越接近0,查准率或查全率就越高D.为了解决准确率和查全率冲突问题,引入了F1分数数据分析认证考试介绍:点击进入题目来源于CDA
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc