- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- 初入机器学习
辰尘_星启
机器学习人工智能深度学习pythonmxnet
写在前面本专栏专门撰写深度学习相关的内容,防止自己遗忘,也为大家提供一些个人的思考一切仅供参考概念辨析深度学习:本质是建模,将训练得到的模型作为系统的一部分使用侧重于发现样本集中隐含的规律难点是认识并了解模型,合理设置初始模型,要对建模对象有比较深刻的认识依赖大量的准确训练样本强化学习:本质是系统,直接将训练得到的模型视作系统本身(激进的像“端到端”)侧重于最大化当前环境下的奖励,最终目标是寻找环
- 【博学谷学习记录】超强总结,用心分享 | Hive分区表和分桶表
Onzswhite
hive大数据hadoop
#博学谷IT技术支持#一、分区表分区表就是对一个表的文件数据进行分类管理,表现形式就是有很多的文件夹(dt=2019-02-27)。分区表的作用是以后查询时,我们可以手动指定对应分区的数据,避免全表扫描,提高查询效率。所谓的分区表,指的就是将数据按照表中的某一个字段进行统一归类,并存储在表中的不同的位置,也就是说,一个分区就是一类,这一类的数据对应到hdfs存储上就是对应一个目录。当我们需要进行处
- 深度学习:基于MindNLP的RAG应用开发
Landy_Jay
深度学习人工智能
什么是RAG?RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合检索(Retrieval)和生成(Generation)的技术,旨在提升大语言模型(LLM)生成内容的准确性、相关性和时效性。基本思想:通过外部知识库动态检索与用户查询相关的信息,并将检索结果作为上下文输入生成模型,辅助生成更可靠的回答。与传统LLM的区别:传统LLM仅依赖预训练参数中的静态知
- 深度学习篇---张量&数据流动处理
Ronin-Lotus
深度学习篇深度学习人工智能pythonTensorFlowPytorch张量数据流动处理
文章目录前言第一部分:张量张量的基本概念1.维度标量(0维)向量(1维)矩阵(2维)三维张量2.形状张量运算1.基本运算加法减法乘法除法2.广播3.变形4.转置5.切片6.拼接7.矩阵分解8.梯度运算:深度学习框架中的张量运算1.自动求导2.硬件加速3.高度优化第二部分:数据流动与处理1.磁盘(硬盘或固态硬盘)读取数据写入数据2.内存(RAM)加载程序和数据数据交换3.缓存CPU缓存磁盘缓存4.数
- PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(NeuralODEs)是深度学习领域的创新性模型架构,它将神经网络的离散变换扩展为连续时间动力系统。与传统神经网络将层表示为离散变换不同,NeuralODEs将变换过程视为深度(或时间)的连续函数。这种方法为机器学习开创了新的研究方向,尤其在生成模型、时间序列分析和物理信息学习等领域具有重要应用。本文将基于Torchdyn(一个专门用于连续深度学习和平衡模型的PyTorch扩展库)
- 基于CNN(一维卷积Conv1D)+LSTM+Attention 实现股票多变量时间序列预测(PyTorch版)
矩阵猫咪
cnnlstmpytorch注意力机制卷积神经网络长短期记忆网络Attention
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。在深度学习的众多模型中,卷积神经网络(CNN)和长短期记忆网络(LSTM)因其独特的优势
- DeepSeek:开启智能搜索与AI发展的新纪元
gs80140
AI人工智能
在人工智能领域,DeepSeek正以其卓越的技术创新和强大的性能表现,成为全球瞩目的焦点。作为一款基于深度学习技术的智能搜索引擎和AI模型,DeepSeek不仅在技术上取得了重大突破,还在多个应用场景中展现了巨大的应用潜力,为用户带来了前所未有的智能体验。一、DeepSeek简介DeepSeek由杭州深度求索人工智能基础技术研究有限公司推出,是一款集自然语言处理(NLP)、计算机视觉(CV)、强化
- 【Java】已解决java.lang.ClassNotFoundException异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- Megatron:深度学习中的高性能模型架构
gs80140
基础知识科谱AI机器学习人工智能
Megatron:深度学习中的高性能模型架构Megatron是由NVIDIA推出的深度学习大规模预训练模型框架,主要针对大规模Transformer架构模型的高效训练与推理。Megatron大多用于GPT(生成式预训练模型)、BERT等Transformer模型的预训练,擅长在大规模数据集和高性能计算资源上进行训练。Megatron的主要特点1.超大模型的高效训练模型并行(ModelParalle
- AIGC的底层框架和技术模块
五岔路口
AIGC
AIGC(ArtificialIntelligenceGeneratedContent,人工智能生成内容)的底层框架和技术模块是构建其强大自然语言处理能力的核心组成部分。以下是对AIGC底层框架和技术模块的详细解析:底层框架AIGC的底层框架主要基于深度学习的语言模型,特别是Transformer模型及其变种,如GPT(GenerativePre-trainedTransformer)等。这些模型
- 深度学习:基础原理与实践
阿尔法星球
深度学习python人工智能
1.深度学习概述1.1定义与发展历程深度学习是机器学习的一个分支,它基于人工神经网络的学习算法,特别是那些具有多层(深层)结构的网络。深度学习模型能够自动从原始数据中提取复杂的特征,而不需要人为设计特征提取算法。定义:深度学习可以定义为使用深层神经网络进行学习的过程,这些网络由多个非线性的变换组成,能够学习数据的多层次表示。发展历程:深度学习的起源可以追溯到1943年WarrenSturgisMc
- 什么是MoE?
CM莫问
深度学习人工智能算法常见概念人工智能算法python深度学习MoE混合专家模型机器学习
一、概念MoE(MixtureofExperts)是一种深度学习架构,它结合了多个专家模型(Experts)和一个门控机制(GatingMechanism)来处理不同的输入数据或任务。MoE的核心思想是将复杂的任务分解为多个子任务,由不同的专家网络来处理,以此来提升整体模型的性能和效率。MOE通过集成多个专家来显著提高模型的容量和表达能力,每个专家可以专注于学习输入数据的不同方面或特征,使得整个模
- 【 书生·浦语大模型实战营】学习笔记(三):“茴香豆” 搭建你的RAG 智能助理
GoAI
自然语言处理NLP深入浅出AI深入浅出LLM深度学习LLM人工智能大模型
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接【书生·
- 课程内容摘要生成:基于知识蒸馏与事实增强的深度学习模型实践
二进制独立开发
非纯粹GenAIGenAI与Python深度学习人工智能自然语言处理python语言模型神经网络生成对抗网络
文章目录引言一、核心技术:知识蒸馏与事实三元组融合二、模型架构设计与优化三、Python实现与关键代码解析四、业务价值与效果分析五、挑战与优化方向引言在教育内容数字化进程中,课程内容摘要生成技术能够从海量教学资源中提炼核心知识点,解决人工编写效率低、知识更新滞后的问题。当前主流方法依赖于深度学习模型,但存在事实性偏差、可解释性不足等缺陷。本文提出一种融合知识蒸馏与事实三元组增强的摘要生成框架,结合
- 详解大模型微调数据集构建方法(持续更新)
herosunly
大模型微调数据集构建方法
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文详细介绍了大模型微调数据集构建方法,希望能对学习大模型的同学们有所帮助。文章目录
- 基于深度学习的基于视觉的机器人导航
SEU-WYL
深度学习dnn深度学习机器人人工智能
基于深度学习的视觉机器人导航是一种通过深度学习算法结合视觉感知系统(如摄像头、LiDAR等)实现机器人在复杂环境中的自主导航的技术。这种方法使机器人能够像人类一样使用视觉信息感知环境、规划路径,并避开障碍物。与传统的导航方法相比,深度学习模型能够在动态环境中表现出更强的适应能力和鲁棒性。1.视觉导航的基本概念视觉导航是指通过处理机器人的摄像头等视觉传感器采集到的图像数据,构建环境模型,进而进行路径
- 【深度学习】softmax回归的简洁实现
熙曦Sakura
深度学习深度学习回归人工智能
softmax回归的简洁实现我们发现(通过深度学习框架的高级API能够使实现)(softmax)线性(回归变得更加容易)。同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。本节继续使用Fashion-MNIST数据集,并保持批量大小为256。importtorchfromtorchimportnnfromd2limporttorchasd2l初始化模型参数[softmax回
- 深度学习查漏补缺:1.梯度消失、梯度爆炸和残差块
nnerddboy
白话机器学习深度学习人工智能
一、梯度消失梯度消失的根本原因在于激活函数的性质和链式法则的计算:激活函数的导数很小:常见的激活函数(例如Sigmoid和Tanh)在输入较大或较小时,输出趋于饱和(Sigmoid的输出趋于0或1),其导数接近于0。在反向传播中,每一层的梯度都会乘以激活函数的导数。如果导数很小,乘积就会导致梯度逐渐变小。链式法则的多次相乘:假设网络有nn层,梯度从输出层传到第ii层时,会经历多次链式相乘:如果每一
- 从System Prompt来看Claude3、Kimi和ChatGLM4之间的差距
herosunly
大模型systempromptgpt4claudekimiChatGLM4
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看Claude3、Kimi和ChatGLM
- 基于face_recognition的人脸识别
#北极星star
人脸识别人工智能opencv计算机视觉
目录一.简要介绍二.相关函数三.算法流程四.代码实现五.效果展示一.简要介绍face_recognition是一个基于Python的开源人脸识别库,它使用dlib库中的深度学习模型来实现人脸识别功能。这个库以其简洁的API和高效的性能而广受欢迎,成为许多开发者和研究者的首选工具。face_recognition库的主要功能包括:1.人脸检测:识别图像中所有的人脸并返回其位置信息。2.人脸编码:将检
- solr 的admin.html 详细使用讲解
qq_37300675
solr
爱雨轩真正的爱情,就像花朵,开放的地方越贫瘠,越是美丽动人!目录视图摘要视图订阅征文|从高考,到程序员深度学习与TensorFlow入门一课搞定!每周荐书|Web扫描、HTML5、Python(评论送书)solr管理界面详解标签:solrsolr管理界面solrqueryanalysis2016-08-0210:425117人阅读评论(0)收藏举报本文章已收录于:分类:Solr(8)作者同类文章X
- 深度学习-笔记2
深度学习神经网络
paddlepaddle安装(使用cpu):dockerpullregistry.baidubce.com/paddlepaddle/paddle:2.6.2查看下paddlepaddle的镜像层次和安装目录结构(没有看到dockerbuild文件,先感受一下目录结构吧):dockerinspectregistry.baidubce.com/paddlepaddle/paddle:2.6.2|gr
- 多模态大模型:技术原理与实战 工具和算法框架介绍
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1从单模态到多模态的必然趋势传统的深度学习模型大多是单模态的,例如只处理图像数据的卷积神经网络(CNN)或只处理文本数据的循环神经网络(RNN)。然而,现实世界的信息往往是多模态的,例如一张图片可以包含物体、场景、文字等多种信息,一段视频则包含图像、声音、字幕等多种模态的数据。为了更好地理解和处理现实世界的信息,多模态学习应运而生。近年来,随着深度学习技术的快速发展,多模态学习取得
- 从零开始大模型开发与微调:汉字拼音数据集处理
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:汉字拼音数据集处理1.背景介绍1.1问题的由来在人工智能领域,自然语言处理(NLP)是一项基础且重要的研究方向。随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModel,LLM)在NLP领域取得了显著的成果。然而,LLM的训练与微调过程往往需要海量的文本数据,而这些数据通常以自然语言形式存在,难以直接用于模型训练。因此,如何从自然语言数据中提取结构
- 深度学习专业毕业设计选题清单:算法与应用
HaiLang_IT
毕业设计选题毕业设计人工智能深度学习
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了计算机专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇总
- 什么是“知识蒸馏”
清风AI
深度学习人工智能神经网络pythonconda
定义与原理在深度学习领域不断突破的同时,模型的复杂度和计算需求也随之增加。为了解决这一问题,知识蒸馏技术应运而生,成为模型压缩和性能优化的重要手段。本节将详细介绍知识蒸馏的基本概念、工作原理和知识迁移机制。知识蒸馏是一种将大型预训练模型(教师模型)的知识转移到较小模型(学生模型)的技术。这种方法不仅能保留原有模型的性能,还能显著降低模型的复杂度和计算需求,使其更适合在资源受限的环境中部署。知识蒸馏
- AI在虚拟试衣中的应用:革新在线购物体验
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟试衣中的应用:革新在线购物体验关键词:虚拟试衣,增强现实,在线购物,深度学习,图像识别,人工智能,用户交互1.背景介绍1.1问题由来随着电子商务的迅猛发展,在线购物已经成为人们日常生活的一部分。然而,由于无法亲身试穿,在线购物体验在满足用户个性化需求方面仍存在诸多不足。传统的网页图片展示和文字描述难以真实传达衣物的质地、颜色和尺寸。因此,虚拟试衣技术应运而生,成为电商平台上提升用户体验的
- AI在虚拟客户服务中的应用:提供24_7支持
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟客户服务中的应用:提供24/7支持关键词:虚拟客服,自然语言处理(NLP),聊天机器人,对话系统,深度学习,用户支持,自动化1.背景介绍随着互联网和移动互联网的迅速发展,客户服务成为各大企业提升竞争力的重要环节。但传统的客服模式存在诸多痛点:人力成本高、响应时间慢、工作时间有限等。在企业面临全时用户需求和竞争压力日益加剧的当下,如何以更低的成本、更快的速度、更高效的资源利用率,持续提供优
- 柳暗花明又一村:Seq2Seq编码器解码器架构
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
Seq2Seq,编码器-解码器,自然语言处理,机器翻译,文本生成,循环神经网络,长短期记忆网络1.背景介绍在人工智能领域,自然语言处理(NLP)始终是研究的热点之一。从机器翻译到文本摘要,从对话系统到问答机器人,Seq2Seq编码器-解码器架构在众多NLP任务中展现出强大的能力。传统的机器翻译方法通常依赖于统计模型和规则引擎,难以捕捉语言的复杂性和语义关系。随着深度学习的兴起,Seq2Seq架构为
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s