tensorflow的变量空间管理

查看变量空间,或者变量结构

当你不想直接进行训练,但打算查看模型结构时,当你把模型结构写进文件logs时就会生成模型文件。之重要的是这句写文件的:
writer = tf.summary.FileWriter('logs/',sess.graph)

import tensorflow as tf
with tf.name_scope('input'):
    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,784],name='x-input')
    y = tf.placeholder(tf.float32,[None,10],name='y-input')

    
with tf.name_scope('layer'):
    #创建一个简单的神经网络
    with tf.name_scope('wights'):
        W = tf.Variable(tf.zeros([784,10]),name='W')
    with tf.name_scope('biases'):    
        b = tf.Variable(tf.zeros([10]),name='b')
    with tf.name_scope('wx_plus_b'):
        wx_plus_b = tf.matmul(x,W) + b
    with tf.name_scope('softmax'):
        prediction = tf.nn.softmax(wx_plus_b)

#二次代价函数
# loss = tf.reduce_mean(tf.square(y-prediction))
with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
with tf.name_scope('train'):
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#初始化变量
init = tf.global_variables_initializer()

with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
        #结果存放在一个布尔型列表中
        correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    with tf.name_scope('accuracy'):
        #求准确率
        accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:
    sess.run(init)
    writer = tf.summary.FileWriter('logs/',sess.graph)

你可能感兴趣的:(tensorflow的变量空间管理)