零基础入门金融风控-贷款违约预测_Task1

贷款违约预测_Task1

  • 零基础入门金融风控-贷款违约预测_Task1
    • 数据概况
    • 预测指标

零基础入门金融风控-贷款违约预测_Task1

数据概况

数据包含三部分:训练集(train.csv)、测试集A(testA.csv)、提交结果样例(sample_submit.csv)。其中,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。
属性信息如下:

Field Description
id 为贷款清单分配的唯一信用证标识
loanAmnt 贷款金额
term 贷款期限(year)
interestRate 贷款利率
installment 分期付款金额
grade 贷款等级
subGrade 贷款等级之子级
employmentTitle 就业职称
employmentLength 就业年限(年)
homeOwnership 借款人在登记时提供的房屋所有权状况
annualIncome 年收入
verificationStatus 验证状态
issueDate 贷款发放的月份
purpose 借款人在贷款申请时的贷款用途类别
postCode 借款人在贷款申请中提供的邮政编码的前3位数字
regionCode 地区编码
dti 债务收入比
delinquency_2years 借款人过去2年信用档案中逾期30天以上的违约事件数
ficoRangeLow 借款人在贷款发放时的fico所属的下限范围
ficoRangeHigh 借款人在贷款发放时的fico所属的上限范围
openAcc 借款人信用档案中未结信用额度的数量
pubRec 贬损公共记录的数量
pubRecBankruptcies 公开记录清除的数量
revolBal 信贷周转余额合计
revolUtil 循环额度利用率,或借款人使用的相对于所有可用循环信贷的信贷金额
totalAcc 借款人信用档案中当前的信用额度总数
initialListStatus 贷款的初始列表状态
applicationType 表明贷款是个人申请还是与两个共同借款人的联合申请
earliesCreditLine 借款人最早报告的信用额度开立的月份
title 借款人提供的贷款名称
policyCode 公开可用的策略_代码=1新产品不公开可用的策略_代码=2
n系列匿名特征 匿名特征n0-n14,为一些贷款人行为计数特征的处理

预测信息为:

Field Description
isDefault 贷款是否已逾期

比赛目标为:提交测试数据集中每个测试样本是1的概率,也就是y为1的概率。评价方法为AUC评估模型效果(越大越好)。

预测指标

竞赛采用AUC作为评价指标。AUC(Area Under Curve)被定义为 ROC曲线 下与坐标轴围成的面积。

分类算法常见的评估指标如下:
1、混淆矩阵(Confuse Matrix)

(1)若一个实例是正类,并且被预测为正类,即为真正类TP(True Positive )
(2)若一个实例是正类,但是被预测为负类,即为假负类FN(False Negative )
(3)若一个实例是负类,但是被预测为正类,即为假正类FP(False Positive )
(4)若一个实例是负类,并且被预测为负类,即为真负类TN(True Negative )
2、准确率(Accuracy) 准确率是常用的一个评价指标,但是不适合样本不均衡的情况。 A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy = \frac{TP + TN}{TP + TN + FP + FN} Accuracy=TP+TN+FP+FNTP+TN

3、精确率(Precision) 又称查准率,正确预测为正样本(TP)占预测为正样本(TP+FP)的百分比。 P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP + FP} Precision=TP+FPTP

4、召回率(Recall) 又称为查全率,正确预测为正样本(TP)占正样本(TP+FN)的百分比。 R e c a l l = T P T P + F N Recall = \frac{TP}{TP + FN} Recall=TP+FNTP

5、F1 Score 精确率和召回率是相互影响的,精确率升高则召回率下降,召回率升高则精确率下降,如果需要兼顾二者,就需要精确率、召回率的结合F1 Score。 F 1 − S c o r e = 2 1 P r e c i s i o n + 1 R e c a l l F1-Score = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}} F1Score=Precision1+Recall12

6、P-R曲线(Precision-Recall Curve) P-R曲线是描述精确率和召回率变化的曲线

7、ROC(Receiver Operating Characteristic)

ROC空间将假正例率(FPR)定义为 X 轴,真正例率(TPR)定义为 Y 轴。
TPR:在所有实际为正例的样本中,被正确地判断为正例之比率。 T P R = T P T P + F N TPR = \frac{TP}{TP + FN} TPR=TP+FNTP FPR:在所有实际为负例的样本中,被错误地判断为正例之比率。 F P R = F P F P + T N FPR = \frac{FP}{FP + TN} FPR=FP+TNFP
8、AUC(Area Under Curve) AUC(Area Under Curve)被定义为 ROC曲线 下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。

你可能感兴趣的:(CS224n,学习笔记,机器学习,深度学习)