- agent实现:通过prompt方式实现agent自定义使用
loong_XL
深度学习大模型AIpromptagent打磨下大模型
参看:https://github.com/TommyZihao/openvino_tonypihttps://github.com/QwenLM/Qwen/blob/main/examples/react_prompt.md(思想类似react)通过prompt形式,基本任何llm模型都可以使用来自定义agent,不用只能那些支持functioncall的大模型的,更灵活自由prompt案例:比
- YOLOv8n-seg.pt的使用(实例分割,训练自己制作的数据集)
再坚持一下!!!
YOLO
Ubuntu+python3一、YOLOV8源码下载参考:GitHub-ultralytics/ultralytics:NEW-YOLOv8inPyTorch>ONNX>OpenVINO>CoreML>TFLite二、数据集制作1.labelme下载:pip3installlabelme2.终端输入labelme,打开labelme。界面“打开目录”,打开图片目录images,进行多边形标注(右键
- 英特尔开发板试用:结合OAK深度相机进行评测
OAK中国_官方
数码相机
最近英特尔官方发布了一篇文章:主要介绍了如何将英特尔开发板(小挪吒)与OAK深度相机结合使用,并通过OpenVINO™工具套件进行开发和性能评测OAK相机:作为深度数据采集的核心设备,其深度测距功能与OpenVINO™推理相结合,实现了高效的目标检测和深度信息处理。OpenVINO™:作为英特尔的深度学习推理框架,为开发板和OAK相机提供了强大的推理支持。性能优化:通过模型转换和硬件加速,去实现高
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
人工智能
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
pytorch人工智能python
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- yolov5 实例分割:从原理、构建数据集到训练部署
外卖猿
AI实战yolov5实例分割c++部署opencv自定义数据集
yolov5实例分割:从原理、构建数据集到训练部署1.模型介绍1.1YOLOv5结构1.2YOLOv5推理时间2.构建数据集2.1使用labelme标注数据集2.2生成coco格式label2.3coco格式转yolo格式3.训练3.1整理数据集3.2修改配置文件3.3执行代码进行训练4.使用OpenCV进行c++部署5.使用openvino进行c++部署参考文献1.模型介绍1.1YOLOv5结构
- openvino yolov11识别
yuyuyue249
openvinoYOLOpython
importcv2importpathlibfromultralyticsimportYOLOimportmatplotlib.pyplotaspltimportopenvinoasovcore=ov.Core()det_model_path=pathlib.Path("/home/yuyue/yolov11/weights/yolo11n/yolo11n.xml")det_ov_model=co
- openvino:ImportError: DLL load failed while importing _pyopenvino: 找不到指定的模块。
码农市民小刘
openvino
万能的网友们,真诚发问,Openvino这玩意,安装之后咋就那么爱缺dll呢。我已经鼓捣一天了,筋疲力尽。两台电脑,一台安装之后就可以了,另外一台,安那个版本都不行.......,那位大神有知道原因和解决方案的不,求答案。
- LLM模型部署经验分享
lewis_kai
阿里云语言模型
LLM模型部署经验分享作者:大连理工大学李凯首先,你需要选择一个合适的部署平台,这可以是本地服务器、云服务提供商(如AWS、Azure、GoogleCloud等)、边缘设备或者特定的部署服务(如HuggingFaceHub)。在这里我使用的是魔搭平台的云服务器。然后下载你要部署的模型,这里下载的是通义千问。下载并部署玩模型后,我们还可以对模型转换和优化,该文会介绍基于OpenVINO的模型量化实践
- 【vLLM 学习】使用 OpenVINO 安装
HyperAI超神经
vLLMopenvino人工智能pythonvLLMLLMGPU编程
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/由OpenVINO驱动的vLLM支持来自vLLM支持的模型列表中的所有LLM模型,并且可以在所有x86-64CPU上(至少需要AVX2支持)进行最佳的模型服务。OpenVINO的vLLM后端支持以下高级vLLM特性:前
- 开发者实战 | OpenVINO™ 协同 Semantic Kernel:优化大模型应用性能新路径
OpenVINO 中文社区
openvino人工智能
点击蓝字关注我们,让开发变得更有趣作者:杨亦诚作为主要面向RAG任务方向的框架,SemanticKernel可以简化大模型应用开发过程,而在RAG任务中最常用的深度学习模型就是Embedding和Textcompletion,分别实现文本的语义向量化和文本生成,因此本文主要会分享如何在SemanticKernel中调用OpenVINO™runtime部署Embedding和Textcompleti
- 【vLLM 学习】使用 OpenVINO 安装
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/由OpenVINO驱动的vLLM支持来自vLLM支持的模型列表中的所有LLM模型,并且可以在所有x86-64CPU上(至少需要AVX2支持)进行最佳的模型服务。OpenVINO的vLLM后端支持以下高级vLLM特性:前
- C# OpenVino Yolov8 Pose 姿态识别
乱蜂朝王
人工智能c#openvinoYOLO
目录效果模型信息项目代码下载效果模型信息ModelProperties-------------------------date:2023-09-07T17:11:43.091306description:UltralyticsYOLOv8n-posemodeltrainedon/usr/src/app/ultralytics/datasets/coco-pose.yamlauthor:Ultra
- YOLOv8-Openvino和ONNXRuntime推理【CPU】
你的陈某某
YOLOopenvino人工智能yolov8目标检测
1环境:CPU:i5-125002安装Openvino和ONNXRuntime2.1Openvino简介Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包,主要用于对深度推理做优化。Openvino内部集成了Opencv、TensorFlow模块,除此之外它还具有强大的Plugin开发框架,允许开发者在Openvino之上对推理过程做优化。Openvino整体框架为
- OpenCV DNN 活体检测项目环境配置等各阶段tips
十橙
MachineLearningOpenCVopencvdnn人工智能活体检测
date:2020-09-2214:53资料来源《OpenCV深度学习应用与性能优化实践》第八章。在复现这个项目的时候发现一些可以调整的小tips。环境配置阶段使用conda创建python工作环境时,注释掉requirems.txt里的opencv-python-inference-engine==4.1.2.1,安装OpenVINO时包含这个了,如果使用requirements里的版本,ims
- OpenVion22.3.x以及Opencv DNN部署yolov5(C++)全过程含代码
o0Orange
openvino部署YOLOopenvino持续部署opencvc++
部署Openvino在win平台上走了不少坑,这里将从第一步开始进行,避免以后遗忘。第一步肯定是先把yolo5的工程跑通啦,基本上7.0运行一下会自动下载各种,非常方便,基本不存在复杂的配置过程。跑通后需要pip一下export.py所需要的openvino包:openvino:这一般是OpenVINO的主要安装包,它包含了一系列的工具,库,和插件,用于优化,执行和部署各种深度学习模型。它可能包括
- YOLOv8 + openVINO 多线程数据读写顺序处理
-_Matrix_-
c++c++算法
多线程数据读写顺序处理一个典型的生产者-消费者模型,在这个模型中,多个工作线程并行处理从共享队列中获取的数据,并将处理结果以保持原始顺序的方式放入另一个队列。多线程处理模型,具体细节如下:1.数据:数据里必须有个递增的标识符和一个结束标识(ending)2.读队列(安全队列):用于存放待处理的数据。处理线程:每个线程都是一个死循环读数据-处理数据-写数据,它们被编号为1、2、3、4等。这些线程负责
- 四、yolov8模型导出和查看
Dakchueng
win10+yolov8分割C++TRT和vino部署YOLO深度学习人工智能
yolv8模型导出1、找到engine文件夹下的exporter.py文件。2、修改文件夹路径,改为我们训练结束后生成的文件夹。3、打开default.yaml文件夹,找到format参数,修改为onnx,找到batch改为1,然后返回exporter.py文件,运行,导出onnx模型,方便trt和onnxruntime部署。4、以上就是一个模型导出的完整流程;然而有人想要用openvino部署,
- 【计算机视觉】Openvino给yolov5目标检测提速实战
Sciengineer-Mike
目标检测计算机视觉openvino人工智能
1.摘要目标检测是计算机视觉主要应用方向之一。目标检测通常包括两方面的工作,首先是找到目标,然后就是识别目标。常用的目标检测方法分为两大流派:一步走(one_stage)算法:直接对输入的图像应用算法并输出类别和相应的定位,典型的算法有yolo,ssd;两步走(two_stage)算法:先产生候选区域,然后在进行CNN分类,代表的算法有R-CNN。其中一步走目标检测算法检测速度快,实时性好,在模型
- 【OpenVINO™】在 MacOS 上使用 OpenVINO™ C# API 部署 Yolov5 (上篇)
椒颜皮皮虾྅
#OpenVINOC#API深度学习C#openvinomacosc#
在MacOS上使用OpenVINO™C#API部署Yolov5(上篇)项目介绍YOLOv5是革命性的"单阶段"对象检测模型的第五次迭代,旨在实时提供高速、高精度的结果,是世界上最受欢迎的视觉人工智能模型,代表了Ultralytics对未来视觉人工智能方法的开源研究,融合了数千小时研发中积累的经验教训和最佳实践。同时官方发布的模型已经支持OpenVINO™部署工具加速模型推理,因此在该项目中,我们将
- 【OpenVINO™】在 MacOS 上使用 OpenVINO™ C# API 部署 Yolov5 (下篇)
椒颜皮皮虾྅
#OpenVINOC#APIC#深度学习openvinomacosc#
在MacOS上使用OpenVINO™C#API部署Yolov5(下篇)项目介绍YOLOv5是革命性的"单阶段"对象检测模型的第五次迭代,旨在实时提供高速、高精度的结果,是世界上最受欢迎的视觉人工智能模型,代表了Ultralytics对未来视觉人工智能方法的开源研究,融合了数千小时研发中积累的经验教训和最佳实践。同时官方发布的模型已经支持OpenVINO™部署工具加速模型推理,因此在该项目中,我们将
- C# OpenVINO 图片旋转角度检测
天天代码码天天
C#人工智能实践OpenVinoopenvino人工智能opencv目标检测机器学习深度学习神经网络
目录效果项目代码下载效果项目代码usingOpenCvSharp;usingSdcb.OpenVINO;usingSystem;usingSystem.Diagnostics;usingSystem.Drawing;usingSystem.Linq;usingSystem.Runtime.InteropServices;usingSystem.Security.Cryptography;using
- C# OpenVino Yolov8 Seg 分割
天天代码码天天
C#人工智能实践OpenVinoopenvinoYOLO人工智能opencv目标检测机器学习深度学习
目录效果模型信息项目代码下载效果模型信息ModelProperties-------------------------date:2023-09-07T17:11:46.798385description:UltralyticsYOLOv8n-segmodeltrainedoncoco.yamlauthor:Ultralyticstask:segmentlicense:AGPL-3.0https:
- 超详细||YOLOv8基础教程(环境搭建,训练,测试,部署看一篇就够)(在推理视频中添加FPS信息)
liuzifu123
YOLO深度学习pycharmpython
一、YOLOv8环境搭建这篇文章将跳过基础的深度学习环境的搭建,如果没有完成的可以看我的这篇博客:超详细||深度学习环境搭建记录cuda+anaconda+pytorch+pycharm-CSDN博客1.在github上下载源码:GitHub-ultralytics/ultralytics:NEW-YOLOv8inPyTorch>ONNX>OpenVINO>CoreML>TFLite2.安装ult
- 【OpenVINO™】在 Windows 上使用 OpenVINO™ C# API 部署 Yolov8-obb 实现任意方向的目标检测
椒颜皮皮虾྅
OpenVINO#OpenVINOC#APIC#openvinowindowsc#YOLO人工智能开源目标检测
前言UltralyticsYOLOv8基于深度学习和计算机视觉领域的尖端技术,在速度和准确性方面具有无与伦比的性能。其流线型设计使其适用于各种应用,并可轻松适应从边缘设备到云API等不同硬件平台。YOLOv8OBB模型是YOLOv8系列模型最新推出的任意方向的目标检测模型,可以检测任意方向的对象,大大提高了物体检测的精度。同时官方发布的模型已经支持OpenVINO™部署工具加速模型推理,因此在该
- 英特尔正式发布OpenVINO™ 2023.3版本
hyang1974
ROS&AIopenvino人工智能
2024年1月24日,英特尔正式发布了OpenVINO™2023.3版本(ReleaseNotesforIntelDistributionofOpenVINOToolkit2023.3)。OpenVINO™是英特尔针对自家硬件平台开发的一套深度学习工具库,包含推断库,模型优化等等一系列与深度学习模型部署相关的功能。OpenVINO™工具包是用于快速开发应用程序和解决方案的综合工具包,可解决各种任务
- 用树莓派4b构建深度学习应用(九)Yolo篇
bluishfish
前言上一篇我们在树莓派上安装了OpenVINO的环境,并跑了几个官方demo,作为关键点的模型转换工作,以各个版本的yolo实现为例,在这篇做一下实现。imageimage目标检测是人工智能应用比较成熟的领域,不仅要能够识别出图片的目标,还要定位其位置,在自动驾驶方面会是一个基础的场景。一般分为两大类别,一类是two-stage的,基于R-CNN,FastR-CNN,FasterR-CNN等等,先
- 基于树莓派与YOLOv3模型的人体目标检测小车(三)
凌乱533
模型效果:在上文中,我们制作了数据集,并利用数据集进行了模型的训练,利用静态图片和视频对模型的检测效果进行了检验,发现效果还是不错的。imageimage前两张为静态图片检测,后一张为视频检测效果截图。image但是模型要想部署在算力微弱的树莓派上,还需要进行两次模型转化才能运行在NCS上进行前向推理。模型转化:第一次转化:(.weight-->.pb)这里的模型转化OpenVINO给出了官方指南
- TVM安装
血_影
ToolsTVM
为什么选择TVM为提升深度学习模型的推理效率,设备平台制造商针对自己的平台推出优化的推理引擎,例如NAVIDA的tensorRT,Intel的OpenVINO,Tencent针对移动端应用推出NCNN等。目前,深度学习模型应用广泛,在服务端和移动端都有应用,甚至于特殊的嵌入式场景想,它们都有加速模型推理的需求。TVM介是从深度学习编译器的角度来做推理引擎,目前技术领域还比较新,具体技术细节以后有机
- OpenVINO执行脚本demo_squeezenet_download_convert_run.bat报错
Maitre Chen
OpenVINO学习笔记openvino人工智能深度学习
Error1错误提示:requests.exceptions.ConnectionError:HTTPSConnectionPool(host=‘http://raw.githubusercontent.com‘,port=443)、HTTPSConnectionobjectat0x7f497ad085f8>:Failedtoestablishanewconnection:[Errno111]Co
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,