详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第1张图片

我们正处在信息爆炸的时代、面对每天铺天盖地的网络资源和论文、很多时候们面临的问题并不是缺资源,而是找准资源并高效学习。其次,即便网络上的资源非常多,学习是需要成本的,而且越有深度的内容越难找到好的学习资源。如果一门课程帮助你清晰地梳理知识体系,而且把有深度的知识点脉络讲清楚,这就是节省最大的成本。为了迎合大家学习的需求,我们这次重磅推出了《自然语言处理高阶研修》。

首先,全网不可能找得到另外一门系统性的训练营具备如此的深度和广度,这里包括国外的课程,所以从内容的角度来讲是非常稀缺的内容。

课程覆盖了从预训练模型、对话系统、信息抽取、知识图谱、文本生成所有必要的技术应用和学术前沿,30+项目案例帮助你在实战中学习成长。课程采用全程直播授课模式,博导级大咖全程辅导答疑、帮你告别疑难困惑。

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第2张图片

适合什么样的人来参加呐?

  • 从事AI行业多年,但技术上感觉不够深入,遇到了瓶颈; 

  • 停留在使用模型/工具上,很难基于业务场景来提出新的模型; 

  • 对于机器学习背后的优化理论、前沿的技术不够深入;

  • 计划从事尖端的科研、研究工作、申请AI领域研究生、博士生; 

  • 打算进入顶尖的AI公司如Google,Facebook,Amazon, 阿里等;

  • 读ICML,IJCAI等会议文章比较吃力,似懂非懂,无法把每个细节理解透。

如果对课程感兴趣,请联系

添加课程顾问小姐姐微信

报名、课程咨询

????????????

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第3张图片

01 课程大纲

课程内容上做了大幅度的更新,课程采用全程直播授课模式。带你全面掌握自然语言处理技术,能够灵活应用在自己的工作中;深入理解前沿的技术,为后续的科研打下基础;快速掌握理解预训练技术、对话技术、生成技术以及知识图谱的常用技术;通过完成一系列课题,有可能成为一个创业项目或者转换成你的科研论文。

模块一 预训练模型

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第4张图片

第一章:预训练模型基础

| 预训练模型基础、语言模型回顾

| N-gram、Neural语言模型回顾

| 预训练方法的发展历程

| 预训练和transfer learning

| Pre-BERT时代的transfer learning

| word2vec,transfer learning in NER

| Post-BERT时代的transfer learning

| Pre-train fine-tune范式

第二章:ELmo与BERT

| Elmo、Transformer、BERT

| 更强的BERT:RoBERTa

| 基于Elmo和BERT的NLP下游任务

| Huggingface Transformers库介绍 

| 构建基于BERT的情感分类器

 第三: GPT系列模型

| GPT、GPT2、GPT3 

| 基于GPT的fine-tuning

| 基于GPT的Zero-shot learning

| 基于GPT模型的文本生成实战

| Top-k + Top-p 采样

| 基于给定Prompt生成续写文本

第四: Transformer-XL与XLNet

| 处理长文本 

| Transformer-XL

| 相对位置编码

| Permutation Language Model

| Two-stream attention

| XLNet

| 更进阶的预训练任务:MPNet

第五:其他前沿的预训练模型

| 考虑知识的预训练模型:ERINE

| 对话预训练模型:PLATO2, DialoGPT

| SpanBERT

| MASS,UniLM

| BART,T5

| 实现基于T5的文本分类模型

第六: 低计算量下模型微调和对比学习

| 低计算量情况下的预训练模型微调

| Adapter-based fine-tuning,

| Prompt-search,P-tuning 

| 基于对比学习的预训练

| 对比学习目标:Triplet Loss,InfoNCE Loss

| 对比学习在NLP中的前沿应用:SimCSE

第七:多模态预训练和挑战

| 多模态预训练模型

| 多模态匹配模型:CLIP,文澜

| VQ-VAE

| 多模态生成模型:DALLE,CogView

| 预训练模型面临的挑战及其前沿进展

| 模型并行带来的挑战

| 对于Transformer的改进:Reformer

模块二 对话系统

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第5张图片

第一:对话系统综述

| 对话系统发展历程

| 对话系统的主要应用场景

| 常见的对话系统类别以及采用的技术

| 对话系统前沿的技术介绍

| 基础:语言模型

| 基础:基于神经网络的语言模型

第二:对话系统综述

| 任务型对话系统的总体架构

| 案例:订票系统的搭建

| 自然语言理解模块简介

| 对话管理模块技术

| 对话生成模型技术

| 基于神经网络的文本分类和序列标注

第三:自然语言处理理解模块

| 自然语言理解模块面临的挑战

| NLU模型中意图和槽位的联合识别

| 考虑长上下文的NLU

| NLU中的OOD检测

| NLU模型的可扩展性和少样本学习

| 少样本学习方法介绍

| 孪生网络、匹配网络、原型网络

第四:对话管理和对话生成

| 对话状态追踪

| 对话策略详解

| POMDP技术

| 对话管理的最新研究进展

| 基于RL的对话管理

| 对话生成技术

| 端到端的对话系统

| 基于预训练模型的DST

第五:闲聊对话系统

| 闲聊对话系统基础技术

| 基于检索的闲聊对话系统

| 基于生成的闲聊对话系统

| 融合检索和生成的闲聊对话系统

| Protoype rewriting, Retrieval augmented generation

| 闲聊对话系统的主要应用场景

| 闲聊对话系统技术所面临的主要挑战

| FAQ系统实战,实现一个自己的FAQ系统

| 基于RNN/Transformer/BERT的文本匹配模型

第六:对话系统进阶

| 情感/共情对话系统

| 生成带情绪的回复

| 个性化对话生成

| 生成符合特定个性人设的回复

| 风格化对话生成

| 对话回复的多样性

| Label Smoothing, Adaptive label smoothing

| Top-K Sampling, Nuclear Sampling

| Non-autoregressive 算法在生成模型中的应用

| 基于Transformer的对话生成模型

| TransferTransfo

第七:开源对话系统架构RASA详解

| RASA的主要架构

| 基于RASA搭建自己的对话系统

| 多模态对话、VQA

| 考虑图像模态的对话回复检索和生成

| 基于预训练模型的对话系统

| 基于GPT模型的对话模型

| Meena,PLA

模块三 信息抽取&知识图谱

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第6张图片

第一:知识图谱与图数据模型

| 知识图谱:搜索引擎,数据整合,AI

| 实体抽取、关系抽取、词向量

| graph embedding

| 图数据模型:RDF, Cyper

| 结构化数据的关系抽取

| 介绍关系抽取的基本方法

| 介绍结构化数据的信息过滤

第二:知识图谱的设计

| RDF和Property graph的设计

| 创建KG:数据处理、文本和图像

| 推断用到的基本方法

| Path detection

| Centrality and community Detection

| 图结构嵌入方法

| 重要性的基本方法:node,edge

第三:关系抽取和预测

| Hand-built patterns

| Bootstrapping methods

| Supervised methods

| Distant supervision

| Unsupervised methods

| 实体识别的基本方法

第四:低资源信息抽取和推断

| Low-resource NER 

| Low-resource structured models

| Learning multi-lingual Embeddings

| Deepath 

| DIVA

| Generic Statistical Relational Entity Resolution in Knowledge Graphs 

第五:结构化预测模型

| Sequence labeling

| 结构化数据类别:Dependency,constituency

| Stack LSTM

| Stack RNNS

| Tree-structure LSTM

第六:图挖掘的热门应用

| 基本图概念

| Link Prediction

| Recommendation system

| Anomaly detection

| Gated Graph Sequence Neural Networks

模块四 文本生成

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第7张图片

第一:Seq2Seq模型与机器翻译

| Seq2seq 模型与机器翻译任务

| 机器翻译中未登录词UNK与subword

| 文本生成coverage

| length normalization

| 低资源语言生成

| 多任务学习

| Tearch Force Model

第二:文本摘要生成(1)

| 摘要生成技术类别

| 生成式摘要生成技术

| 抽取式摘要生成技术

| 基于CNN的文本生成

| 基于RNN的文本生成

第三:文本摘要生成(2)

| Pointer Network 及其应用

| CopyNet 于工业界的落地

| Length Normalization 

| Coverage Normalization

| Text summarization 前沿研究

第四:Creative Writing

| 可控性文本生成

| Story Telling 与预先训练GPT

| 诗词,歌词,藏头诗等文本生成

| 创作性文本生成技巧

第五:多模态文本生成

| ResNet 

| Inception 等预训练图片特征抽取模型

| Image Caption 及其应用

| Table2text

| 图神经网络与文本生成

第六:对抗式文本生成与NL2sql

| 对抗生成网络 GAN模型

| 强化学习基础

| 基于 Policy Gradient 的强化学习

| SeqGAN

| NL2sql :自然语言转SQL

02 部分案例和项目

学员可以选择每个模块完成我们提供的固定项目(以个人为单位),或者以小组为单位完成一个开放式项目(capstone),当然你也可以提出你自己的项目。从项目的立项、中期验收到最终答辩,在这个过程中我们的导师团队会给你建议、并辅助你完成课题, 该课题最终很有可能成为你的创业项目或科研论文!

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第8张图片

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第9张图片

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第10张图片

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第11张图片

如果对课程感兴趣,请联系

添加课程顾问小姐姐微信

报名、课程咨询

????????????

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第12张图片

03 授课导师

郑老师:清华大学计算机系(计算机科学与人工智能研究部)博士后

美国劳伦斯伯克利国家实验室访问学者

主要从事自然语言处理,对话领域的先行研究与商业化

先后在ACL,EMNLP,AAAI,NeurIPS,TASLP,等国际会议及期刊上发表过10篇以上论文

杨老师:香港城市大学博士, UC Merced博士后,主要从事于机器学习,图卷积,图嵌入的研究。先后在ECCV, Trans on Cybernetics, Trans on NSE, INDIN等国际顶会及期刊上发表过数篇论文。

04直播授课,现场推导演示

区别于劣质的PPT讲解,导师全程现场推导,让你在学习中有清晰的思路,深刻的理解算法模型背后推导的每个细节。更重要的是可以清晰地看到各种模型之间的关系!帮助你打通六脉!

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第13张图片

▲源自:LDA模型讲解

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第14张图片

▲源自:Convex Optimization 讲解

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第15张图片

▲源自:Convergence Analysis 讲解

05 科学的课程安排

采用直播的授课方式,每周3-4次直播教学,包含核心理论课、实战课、复习巩固课以及论文讲解课。教学模式上也参考了美国顶级院校的教学体系。以下为其中一周的课程安排,供参考。 

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第16张图片

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第17张图片

06 报名须知

1、本课程为收费教学。

2、本期招收学员名额有限

3、品质保障!学习不满意,可在开课后7天内,无条件全额退款。

4、学习本课程需要具备一定的机器学习基础和Python编程基础。

●●●

如果对课程感兴趣,请联系

添加课程顾问小姐姐微信

报名、课程咨询

????????????

详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术_第18张图片

你可能感兴趣的:(人工智能,编程语言,机器学习,知识图谱,深度学习)