此次转换都是基于yoloV2版本。
参考文章
conda activate openvino # 进入ubuntu 的虚拟环境
git clone https://github.com/ultralytics/yolov5.git
cd yolov5pip3 install -r requirements.txt onnx# 降版本
pip install torch==1.5.1 torchvision==0.6.1
导出训练好的yoloV5模型,并放入到特定目录下
由于onnx和openvino 还不支持 Hardswitch,要将 Hardswish 激活函数改成 Relu 或者 Leaky Relu。
# yolov5/models/common.py
# Line 26 in 5e0b90d
# self.act = nn.Hardswish() if act else nn.Identity()
self.act = nn.Relu() if act else nn.Identity()
# yolov5/models/yolo.py
# Lines 49 to 53 in 5e0b90d
# y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
# y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
# z.append(y.view(bs, -1, self.no))
#
# return x if self.training else (torch.cat(z, 1), x)
c=(y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
d=(y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
e=y[..., 4:]
f=torch.cat((c,d,e),4)
z.append(f.view(bs, -1, self.no))
return x if self.training else torch.cat(z, 1)
# yolov5/models/export.py
# Line 31 in 5e0b90d
# model.model[-1].export = True # set Detect() layer export=True
model.model[-1].export = False
# yolov5/models/export.py
# Lines 51 to 52 in 5e0b90d
# torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
torch.onnx.export(model, img, f, verbose=False, opset_version=10, input_names=['images'],
output_names=['classes', 'boxes'] if y is None else ['output'])
export PYTHONPATH="$PWD"
python models/export.py --weights yolov5s.pt --img 640 --batch 1
ONNX export success, saved as ./yolov5s.onnx
Export complete. Visualize with https://github.com/lutzroeder/netron.
python3 /opt/intel/openvino_2020.4.287/deployment_tools/model_optimizer/mo.py
--input_model yolov5s_2.0.onnx
--output_dir ./out
--input_shape [1,3,640,640]
顺利的话,就能在 out 目录下生成 yolov5s 的 IR 模型了。
#修改参数匹配训练模型
git clone https://github.com/linhaoqi027/yolov5_openvino_sdk.git
修改推理设备和输入 shape
# device = 'CPU'
# input_h, input_w, input_c, input_n = (480, 480, 3, 1)
device = 'MYRIAD'
input_h, input_w, input_c, input_n = (640, 640, 3, 1)
# label_id_map = {
# 0: "fire",
# }
names=['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
label_id_map = {index: item for index, item in enumerate(names)}
修改多类别输出
for idx, proposal in enumerate(data):
if proposal[4] > 0:
print(proposal)
confidence = proposal[4]
xmin = np.int(iw * (proposal[0] / 640))
ymin = np.int(ih * (proposal[1] / 640))
xmax = np.int(iw * (proposal[2] / 640))
ymax = np.int(ih * (proposal[3] / 640))
idx = int(proposal[5])
# if label not in label_id_map:
# log.warning(f'{label} does not in {label_id_map}')
# continue
detect_objs.append({
'name': label_id_map[idx],
'xmin': int(xmin),
'ymin': int(ymin),
'xmax': int(xmax),
'ymax': int(ymax),
'confidence': float(confidence)
})
if __name__ == '__main__':
# Test API
img = cv2.imread('../inference/images/bus.jpg')
predictor = init()
import time
t = time.time()
n = 10
for i in range(n):
result = process_image(predictor, img)
print("平均推理时间",(time.time()-t)/n)
print("FPS", 1/((time.time()-t)/n))
# log.info(result)
for obj in json.loads(result)['objects']:
print(obj)
from __future__ import print_function
import logging as log
import os
import pathlib
import json
import cv2
import numpy as np
from openvino.inference_engine import IENetwork, IECore
import torch
import torchvision
import time
def xywh2xyxy(x):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False):
"""Performs Non-Maximum Suppression (NMS) on inference results
Returns:
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
"""
prediction = torch.from_numpy(prediction)
if prediction.dtype is torch.float16:
prediction = prediction.float() # to FP32
nc = prediction[0].shape[1] - 5 # number of classes
xc = prediction[..., 4] > conf_thres # candidates
# Settings
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
max_det = 300 # maximum number of detections per image
time_limit = 10.0 # seconds to quit after
redundant = True # require redundant detections
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
t = time.time()
output = [None] * prediction.shape[0]
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# If none remain process next image
if not x.shape[0]:
continue
# Compute conf
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
box = xywh2xyxy(x[:, :4])
# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
else: # best class only
conf, j = x[:, 5:].max(1, keepdim=True)
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
# Filter by class
if classes:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Apply finite constraint
# if not torch.isfinite(x).all():
# x = x[torch.isfinite(x).all(1)]
# If none remain process next image
n = x.shape[0] # number of boxes
if not n:
continue
# Sort by confidence
# x = x[x[:, 4].argsort(descending=True)]
# Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
if i.shape[0] > max_det: # limit detections
i = i[:max_det]
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
weights = iou * scores[None] # box weights
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
if redundant:
i = i[iou.sum(1) > 1] # require redundancy
except: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139
print(x, i, x.shape, i.shape)
pass
output[xi] = x[i]
if (time.time() - t) > time_limit:
break # time limit exceeded
return output
device = 'CPU'
# input_h, input_w, input_c, input_n = (480, 480, 3, 1)
input_h, input_w, input_c, input_n = (640, 640, 3, 1)
log.basicConfig(level=log.DEBUG)
# For objection detection task, replace your target labels here.
# label_id_map = {
# 0: "fire",
# }
names=['smoke']
label_id_map = {index: item for index, item in enumerate(names)}
exec_net = None
def init():
"""Initialize model
Returns: model
"""
# model_xml = "/project/train/src_repo/yolov5/runs/exp0/weights/best.xml"
model_xml = "best.xml"
if not os.path.isfile(model_xml):
log.error(f'{model_xml} does not exist')
return None
model_bin = pathlib.Path(model_xml).with_suffix('.bin').as_posix()
log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin))
net = IENetwork(model=model_xml, weights=model_bin)
# Load Inference Engine
# log.info('Loading Inference Engine')
ie = IECore()
global exec_net
exec_net = ie.load_network(network=net, device_name=device)
# log.info('Device info:')
# versions = ie.get_versions(device)
# print("{}".format(device))
# print("MKLDNNPlugin version ......... {}.{}".format(versions[device].major, versions[device].minor))
# print("Build ........... {}".format(versions[device].build_number))
input_blob = next(iter(net.inputs))
n, c, h, w = net.inputs[input_blob].shape
global input_h, input_w, input_c, input_n
input_h, input_w, input_c, input_n = h, w, c, n
return net
def process_image(net, input_image):
"""Do inference to analysis input_image and get output
Attributes:
net: model handle
input_image (numpy.ndarray): image to be process, format: (h, w, c), BGR
thresh: thresh value
Returns: process result
"""
if not net or input_image is None:
log.error('Invalid input args')
return None
# log.info(f'process_image, ({input_image.shape}')
ih, iw, _ = input_image.shape
# --------------------------- Prepare input blobs -----------------------------------------------------
if ih != input_h or iw != input_w:
input_image = cv2.resize(input_image, (input_w, input_h))
input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
input_image = input_image / 255
input_image = input_image.transpose((2, 0, 1))
images = np.ndarray(shape=(input_n, input_c, input_h, input_w))
images[0] = input_image
input_blob = next(iter(net.inputs))
out_blob = next(iter(net.outputs))
# --------------------------- Prepare output blobs ----------------------------------------------------
# log.info('Preparing output blobs')
# log.info(f"The output_name{net.outputs}")
# print(net.outputs)
# output_name = "Transpose_305"
# try:
# output_info = net.outputs[output_name]
# except KeyError:
# log.error(f"Can't find a {output_name} layer in the topology")
# return None
# output_dims = output_info.shape
# log.info(f"The output_dims{output_dims}")
# if len(output_dims) != 4:
# log.error("Incorrect output dimensions for yolo model")
# max_proposal_count, object_size = output_dims[2], output_dims[3]
# if object_size != 7:
# log.error("Output item should have 7 as a last dimension")
# output_info.precision = "FP32"
# --------------------------- Performing inference ----------------------------------------------------
# log.info("Creating infer request and starting inference")
res = exec_net.infer(inputs={input_blob: images})
# --------------------------- Read and postprocess output ---------------------------------------------
# log.info("Processing output blobs")
# res = res[out_blob]
data = res[out_blob]
data = non_max_suppression(data, 0.4, 0.5)
detect_objs = []
data = data[0].numpy()
for idx, proposal in enumerate(data):
if proposal[4] > 0:
print(proposal)
confidence = proposal[4]
xmin = np.int(iw * (proposal[0] / 640))
ymin = np.int(ih * (proposal[1] / 640))
xmax = np.int(iw * (proposal[2] / 640))
ymax = np.int(ih * (proposal[3] / 640))
idx = int(proposal[5])
# if label not in label_id_map:
# log.warning(f'{label} does not in {label_id_map}')
# continue
detect_objs.append({
'name': label_id_map[idx],
'xmin': int(xmin),
'ymin': int(ymin),
'xmax': int(xmax),
'ymax': int(ymax),
'confidence': float(confidence)
})
return json.dumps({"objects": detect_objs})
if __name__ == '__main__':
# Test API
img = cv2.imread('000002.jpg')
predictor = init()
result = process_image(predictor, img)
log.info(result)
1.在Python中导入openvino时报错:from .ie_api import * ImportError: DLL load failed: 找不到指定的模块
https://blog.csdn.net/Thomson617/article/details/101446356
2.RuntimeError: No such operator torchvision::nms问题解决
https://blog.csdn.net/yrwang_xd/article/details/105936538