Pytorch学习笔记(8)———构建CNN网络(下)

pytorch中构建CNN网络

之前的章节中,安装pytorch官网的教程,已经实现了LetNet-5网络的构建以及可视化。本文将继续探索构建CNN网络的方式。将列举4种方式。

torch.nn.Module 类

torch.nn.Module类是所有神经网络的基类。因此构建一个神经网络,需要继承于torch.nn.Module。

  • 神经网络构建的基本格式
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
       x = F.relu(self.conv1(x))
       return F.relu(self.conv2(x))

  • torch.nn.Module类的主要方法

方法一: add_module( name, module)
功能: 给当前的module添加一个字module
参数:
name -------子module的名称
module-------子module

方法二applay(fn)
功能: 对所有子module使用fn
fn(sub_module)

方法三forward(*input)
功能: 神经网络的前向计算。所有子类必须实现该方法。

方法四parameters()
功能:返回moudle parameters的迭代器。

torch.nn.Sequential类

torch.nn.Sequential是一个顺序容器container。根据传入的构造方法依次添加module。也可以直接传入一个有序字典OrderedDict。

# Example of using Sequential
model = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )

# Example of using Sequential with OrderedDict
model = nn.Sequential(OrderedDict([
          ('conv1', nn.Conv2d(1,20,5)),
          ('relu1', nn.ReLU()),
          ('conv2', nn.Conv2d(20,64,5)),
          ('relu2', nn.ReLU())
        ]))

实验/构建神经网络的不同方式

方法一

  • 简单方式
class Net1(nn.Module):

    def __init__(self):
        super(Net1, self).__init__()

        self.conv1 = nn.Conv2d(in_channels=3,
                               out_channels=32,
                               kernel_size=3,
                               stride=1,
                               padding=1)
        # why 32*32*3
        self.fc1 = nn.Linear(in_features=32 * 3 * 3,
                             out_features=128)
        self.fc2 = nn.Linear(in_features=128,
                             out_features=10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), 2)
        x = x.view(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x


print("CNN model_1:")
model_1 = Net1()
print(model_1)

方法二

  • 使用torch.nn.Sequential
class Net2(nn.Module):
    def __init__(self):
        super(Net2, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels=3,
                      out_channels=32,
                      kernel_size=3,
                      stride=1,
                      padding=1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2)
        )

        self.fc = nn.Sequential(
            nn.Linear(in_features=32 * 3 * 3,
                      out_features=128),
            nn.ReLU(),
            nn.Linear(in_features=128,
                      out_features=10)
        )

    def forward(self, x):
        conv_out = self.conv(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.fc(res)
        return out


print('CNN model_2:')
print(Net2())

方法三

  • 使用torch.nn.Sequential, 传入有序字典
    特点: 可以指定每一层的名称
'''

使用字典OrderedDict形式
'''


class Net4(nn.Module):

    def __init__(self):
        super(Net4, self).__init__()
        self.conv = nn.Sequential(
            OrderedDict(
                [
                    ('conv1', nn.Conv2d(in_channels=3,
                                        out_channels=32,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)),
                    ('relu1', nn.ReLU()),
                    ('pool1', nn.MaxPool2d(kernel_size=2))

                ]
            )
        )

        self.fc = nn.Sequential(
            OrderedDict(
                [
                    ('fc1', nn.Linear(in_features=32 * 3 * 3,
                                      out_features=128)),

                    ('relu2', nn.ReLU()),

                    ('fc2', nn.Linear(in_features=128,
                                      out_features=10))
                ]
            )
        )

    def forward(self, x):
        conv_out = self.conv(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.fc(res)
        return out


print('CNN model_4:')
print(Net4())

方法四

  • 使用add_module方法

add_module 是添加一个子module
采用此方式也可以指定每一层的名称

'''
通过 add_module()添加

'''


class Net3(nn.Module):
    def __init__(self):
        super(Net3, self).__init__()
        self.conv = nn.Sequential()
        self.conv.add_module(name='conv1',
                             module=nn.Conv2d(in_channels=3,
                                              out_channels=32,
                                              kernel_size=1,
                                              stride=1))
        self.conv.add_module(name='relu1', module=nn.ReLU())
        self.conv.add_module(name='pool1', module=nn.MaxPool2d(kernel_size=2))

        self.fc = nn.Sequential()
        self.fc.add_module('fc1', module=nn.Linear(in_features=32 * 3 * 3,
                                                   out_features=128))
        self.fc.add_module('relu2', module=nn.ReLU())
        self.fc.add_module('fc2', module=nn.Linear(in_features=128,
                                                   out_features=10))

    def forward(self, x):
        conv_out = self.conv(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.fc(x)
        return out


print('CNN model_3:')
print(Net3())

测试网络

传入一个Tensor
大小: 1x3x6x6

x = torch.randn(1, 3, 6, 6)
model = Net4()
out = model(x)
print(out)

输出结果:
该测试样本的输出:
在这里插入图片描述
添加链接描述

你可能感兴趣的:(pytorch学习,pytorch,cnn,神经网络)