BZOJ3789 : 扫雪车

有上下界的网络流

T向S连容量为正无穷的边,将有源汇转化为无源汇

每条边容量减去下界,设in[i]表示流入i的下界之和减去流出i的下界之和

新建超级源汇SS,TT

对于in[i]>0的点,SS向i连容量为in[i]的边

对于in[i]<0的点,i向TT连容量为-in[i]的边

求出以SS,TT为源汇的最大流,如果等于$\sum in[i](in[i]>0)$,则有解

再求出以S,T为源汇的最大流即为答案

 

#include<cstdio>

const int N=110,inf=~0U>>2;

int n,m,i,j,w,t,S,T,SS,TT,h[N],gap[N],maxflow,sum,in[N],id[N];

struct edge{int t,f;edge *nxt,*pair;}*g[N],*d[N];

inline int min(int a,int b){return a<b?a:b;}

inline void swap(int&a,int&b){int c=a;a=b;b=c;}

inline void add(int s,int t,int f){

  edge *p=new(edge);p->t=t;p->f=f;p->nxt=g[s];g[s]=p;

  p=new(edge);p->t=s;p->f=0;p->nxt=g[t];

  g[t]=p;g[s]->pair=g[t];g[t]->pair=g[s];

}

int sap(int v,int flow,int S,int T){

  if(v==T)return flow;

  int rec=0;

  for(edge *p=d[v];p;p=p->nxt)if(h[v]==h[p->t]+1&&p->f){

    int ret=sap(p->t,min(flow-rec,p->f),S,T);

    p->f-=ret;p->pair->f+=ret;d[v]=p;

    if((rec+=ret)==flow)return flow;

  }

  d[v]=g[v];

  if(!(--gap[h[v]]))h[S]=TT;

  gap[++h[v]]++;

  return rec;

}

int main(){

  scanf("%d%d%d%d",&n,&m,&S,&T);

  for(i=1;i<=n;i++)id[i]=i;

  swap(id[S],id[n-1]),swap(id[T],id[n]);

  S=n-1,T=S+1,SS=T+1,TT=SS+1;add(T,S,inf);

  while(m--){

    scanf("%d%d%d%d",&i,&j,&w,&t);

    i=id[i],j=id[j];

    if(t)in[i]-=w,in[j]+=w;else add(i,j,w);

  }

  for(i=1;i<=TT;i++)if(in[i]>0)sum+=in[i],add(SS,i,in[i]);else add(i,TT,-in[i]);

  for(gap[i=0]=TT;i++<TT;)d[i]=g[i];

  while(h[SS]<TT)maxflow+=sap(SS,inf,SS,TT);

  if(sum!=maxflow)return puts("0"),0;

  for(maxflow=i=0;i<=TT;i++)d[i]=g[i],h[i]=gap[i]=0;

  gap[0]=TT;

  while(h[S]<TT)maxflow+=sap(S,inf,S,T);

  return printf("%d",maxflow),0;

}

  

 

你可能感兴趣的:(ZOJ)