数据归一化、标准化Feature Scaling

标准化

1 Rescaling (Min-max normalization/range scaling)

{x}'=a+\frac{\left ( x-min\left ( x \right ) \right )\left ( b-a \right )}{max\left ( x \right )-min\left ( x \right )},\: {x}'\in \left [ a,b \right ]        返回原值       x=min\left ( x \right )+\frac{\left ( max\left ( x \right )-min\left ( x \right ) \right )\left ( {x}'-a \right )}{b-a}

将特征缩放至特定区间[a,b],将特征缩放到给定最小值a和最大值b之间,或者也可以将每个特征的最大绝对值转换至单位大小。这种方法是对原始数据的线性变换,将数据归一到[0,1]中间。转换函数为:

{x}'=\frac{ x-min\left ( x \right )}{max\left ( x \right )-min\left ( x \right )},\: {x}'\in \left [ 0,1 \right ]         返回原值     x=min\left ( x \right )+\left ( max\left ( x \right )-min\left ( x \right ) \right ){x}'

这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

敲黑板,这种方法对于outlier非常敏感,因为outlier影响了max或min值,所以这种方法只适用于数据在一个范围内分布的情况。

2 Mean normalization

{x}'=\frac{x-\bar{x}}{max\left ( x \right )-min\left ( x \right )}     返回原值     x=\bar{x}+\left ( max\left ( x \right )-min\left ( x \right ) \right ){x}'

3 Standardlization (Z-score normalization)

标准化数据通过减去均值然后除以方差(或标准差),这种数据标准化方法经过处理后数据符合标准正态分布,即均值为0,标准差为1,转化函数为:

{x}'=\frac{x-\bar{x}}{\sigma }    返回原值     x=\bar{x}+\sigma {x}'

适用于:如果数据的分布本身就服从正态分布,就可以用这个方法。

通常这种方法基本可用于有outlier的情况,但是,在计算方差和均值的时候outliers仍然会影响计算。所以,在出现outliers的情况下可能会出现转换后的数的不同feature分布完全不同的情况。

4 Scaling to unit length

{x}'=\frac{x}{\left \| x \right \|}    返回原值     x=\left \| x \right \|{x}'​​​​​​​

参考:

机器学习数据预处理——标准化/归一化方法

 

 

 

 

你可能感兴趣的:(基础学习,数据分析)