注: 本文是总结性文章,不适合初学者
只考虑单隐层单向的RNN,忽略输出层,首先看Vanilla RNN中一个cell的结构:
其计算过程为(设批量大小为 N N N,隐层结点个数为 h h h,输入特征数为 d d d):
H t = tanh ( X t W x h + H t − 1 W h h + b h ) {\bf H}_t=\tanh({\bf X}_t{\bf W}_{xh}+{\bf H}_{t-1}{\bf W}_{hh}+{\boldsymbol b}_h) Ht=tanh(XtWxh+Ht−1Whh+bh)
其中各参数的形状为:
在计算时, b h {\boldsymbol b}_{h} bh 将利用广播机制从上往下复制成 N × h N\times h N×h 的形状。
LSTM中一个cell的结构:
其计算过程为(设 σ ( ⋅ ) \sigma(\cdot) σ(⋅) 代表 Sigmoid ( ⋅ ) \text{Sigmoid}(\cdot) Sigmoid(⋅)):
I t = σ ( X t W x i + H t − 1 W h i + b i ) F t = σ ( X t W x f + H t − 1 W h f + b f ) O t = σ ( X t W x o + H t − 1 W h o + b o ) C ~ t = tanh ( X t W x c + H t − 1 W h c + b c ) C t = F t ⊙ C t − 1 + I t ⊙ C ~ t H t = O t ⊙ tanh ( C t ) \begin{aligned} {\bf I}_t&=\sigma({\bf X}_t{\bf W}_{xi}+{\bf H}_{t-1}{\bf W}_{hi}+{\boldsymbol b}_i) \\ {\bf F}_t&=\sigma({\bf X}_t{\bf W}_{xf}+{\bf H}_{t-1}{\bf W}_{hf}+{\boldsymbol b}_f) \\ {\bf O}_t&=\sigma({\bf X}_t{\bf W}_{xo}+{\bf H}_{t-1}{\bf W}_{ho}+{\boldsymbol b}_o) \\ \tilde{{\bf C}}_t&=\tanh({\bf X}_t{\bf W}_{xc}+{\bf H}_{t-1}{\bf W}_{hc}+{\boldsymbol b}_c) \\ {\bf C}_t&={\bf F}_t \odot{\bf C}_{t-1}+{\bf I}_t\odot \tilde{{\bf C}}_t \\ {\bf H}_t&={\bf O}_t\odot \tanh({\bf C}_t) \\ \end{aligned} ItFtOtC~tCtHt=σ(XtWxi+Ht−1Whi+bi)=σ(XtWxf+Ht−1Whf+bf)=σ(XtWxo+Ht−1Who+bo)=tanh(XtWxc+Ht−1Whc+bc)=Ft⊙Ct−1+It⊙C~t=Ot⊙tanh(Ct)
其中 ⊙ \odot ⊙ 是矩阵的 Hadamard 积,各参数的形状如下:
LSTM一共有三个门: I t , F t , O t {\bf I}_t,{\bf F}_t,{\bf O}_t It,Ft,Ot 分别代表输入门、遗忘门和输出门。输入门用来控制采用多少来自 C ~ t \tilde{{\bf C}}_t C~t 的新数据,遗忘门用来控制保留多少 C t − 1 {\bf C}_{t-1} Ct−1 的内容,输出门用来控制向下一个时间步传递多少记忆信息。
对于LSTM,只考虑 batch_first=True
的情形,输入数据的形状为 L × N × d L\times N\times d L×N×d。此外还需输入 H 0 {\bf H}_0 H0 和 C 0 {\bf C}_0 C0,其形状均为 1 × N × h 1\times N\times h 1×N×h。
LSTM 在所有时间步上的输出为 [ H 1 , H 2 , ⋯ , H L ] L × N × h [{\bf H}_1,{\bf H}_2,\cdots,{\bf H}_L]_{L\times N\times h} [H1,H2,⋯,HL]L×N×h 和 [ C 1 , C 2 , ⋯ , C L ] L × N × h [{\bf C}_1,{\bf C}_2,\cdots,{\bf C}_L]_{L\times N\times h} [C1,C2,⋯,CL]L×N×h。其中 H t {\bf H}_t Ht 代表 t t t 时刻的隐状态, C t {\bf C}_t Ct 代表 t t t 时刻的记忆。
不考虑隐层和输出层之间的参数,可以看出LSTM需要学习的参数一共有 4 4 4 组,即: ( W x ∗ , W h ∗ , b ∗ ) , where ∗ = i , f , o , c ({\bf W}_{x*},{\bf W}_{h*},{\boldsymbol b}_{*}),\; \text{where}\;*=i,f,o,c (Wx∗,Wh∗,b∗),where∗=i,f,o,c。因此我们可以按组去初始化相应的参数。
LSTM需要学习的参数一共有 3 × 4 = 12 3\times4=12 3×4=12 个,相比Vanilla RNN的 3 3 3 个参数多了很多。
首先导入本文代码涉及到的所有包:
import math
import string
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
我们定义一个函数来初始化一组的参数。注意到每一组参数的形状为 ( d × h , h × h , 1 × h ) (d\times h,h\times h,1\times h) (d×h,h×h,1×h):
def init_group_params(input_size, hidden_size):
std = math.sqrt(2 / (input_size + hidden_size))
return nn.Parameter(torch.randn(input_size, hidden_size) * std), \
nn.Parameter(torch.randn(hidden_size, hidden_size) * std), \
nn.Parameter(torch.randn(1, hidden_size) * std)
接下来搭建LSTM(模仿 nn.LSTM
,即不包含隐层和输出层之间的参数):
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size):
super().__init__()
self.W_xi, self.W_hi, self.b_i = init_group_params(input_size, hidden_size)
self.W_xf, self.W_hf, self.b_o = init_group_params(input_size, hidden_size)
self.W_xo, self.W_ho, self.b_f = init_group_params(input_size, hidden_size)
self.W_xc, self.W_hc, self.b_c = init_group_params(input_size, hidden_size)
def forward(self, inputs, h_0, c_0):
L, N, d = inputs.shape
H, C = h_0[0], c_0[0]
outputs = []
for t in range(L):
X = inputs[t]
I = torch.sigmoid(X @ self.W_xi + H @ self.W_hi + self.b_i)
F = torch.sigmoid(X @ self.W_xf + H @ self.W_hf + self.b_f)
O = torch.sigmoid(X @ self.W_xo + H @ self.W_ho + self.b_o)
C_temp = torch.tanh(X @ self.W_xc + H @ self.W_hc + self.b_c)
C = F * C + I * C_temp
H = O * torch.tanh(C)
outputs.append(H)
h_n, c_n = H.unsqueeze(0), C.unsqueeze(0)
outputs = torch.cat(outputs, 0).unsqueeze(1)
return outputs, h_n, c_n
最后搭建模型,此时需要加上线性层(输出层):
class Model(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super().__init__()
self.lstm = LSTM(input_size, hidden_size)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x):
# 全零初始化h_0和c_0
_, h_n, _ = self.lstm(x, torch.zeros(1, x.shape[1], self.linear.in_features).to(device),
torch.zeros(1, x.shape[1], self.linear.in_features).to(device))
return self.linear(h_n[0])
为了验证搭建好的LSTM是正确的模型,我们需要用它来完成一个任务。
通俗点来讲,即给定一个单词(长度为 n n n),当模型读取了前 n − 1 n-1 n−1 个字母后,它能够准确地预测出最后一个字母。例如,对于单词 machine
,当模型读取完 machin
后,它应当给出预测结果:e
。
需要注意的是,字符预测任务并不是完美的。例如给定前两个字母
be
,第三个字母无论是e
还是t
都能构成一个单词,而测试集是有限的,可能只有唯一的答案。
我们使用单词数据集(下载地址),其中训练集包含了 8000 个单词,测试集包含了 2000 个单词,且训练集和测试集没有重合。
LSTM无法直接识别字母,因此需要先将单个字母转化成张量(one-hot编码):
def letter2tensor(letter):
letter_idx = torch.tensor(string.ascii_lowercase.index(letter))
return F.one_hot(letter_idx, num_classes=len(string.ascii_lowercase))
然后再创建一个函数用于将整个单词转化成对应的张量(这里我们将一个单词视为一个 batch,因此形状为 L × 1 × d L\times1\times d L×1×d,其中 d = 26 d=26 d=26, L L L 是单词的长度):
def word2tensor(word):
result = torch.zeros(len(word), len(string.ascii_lowercase))
for i in range(len(word)):
result[i] = letter2tensor(word[i])
return result.unsqueeze(1)
例如:
print(word2tensor('cat'))
# tensor([[[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
# 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
# [[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
# 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
# [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
# 0., 0., 1., 0., 0., 0., 0., 0., 0.]]])
读取训练集和测试集:
with open('words/train.txt') as f:
train_data = f.read().strip().split('\n')
with open('words/test.txt') as f:
test_data = f.read().strip().split('\n')
print(train_data[0], test_data[1])
# clothe trend
此外,为了保证结果的可复现性,我们还需设置种子:
def setup_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
我们将在训练集上训练 5 个epoch,因为 batch_size=1
,所以每隔 800 个 Iteration 输出一次损失并计算此时模型在测试集上的准确率,最后绘制相应的曲线。
setup_seed(42)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# 实际上相当于26分类任务,所以输出层神经元个数是26
model = Model(26, 64, 26)
model.to(device)
LR = 7e-3 # 学习率
EPOCHS = 5 # 多少个epoch
INTERVAL = 800 # 多少个iteration输出一次
critertion = nn.CrossEntropyLoss()
# 采用SGD优化器会出现测试集精度不变的情况
optimizer = torch.optim.Adam(model.parameters(), lr=LR, weight_decay=3e-4)
train_loss = []
test_acc = []
avg_train_loss = 0 # 训练集平均损失
correct = 0 # 模型在测试集上预测正确的个数
for epoch in range(EPOCHS):
print(f'Epoch {epoch+1}')
print('-' * 62)
for iteration in range(len(train_data)):
full_word = train_data[iteration]
# 读取的是前n-1个字母,最后一个字母用作target
X = word2tensor(full_word[:-1]).to(device)
target = torch.tensor([string.ascii_lowercase.index(full_word[-1])]).to(device)
# 正向传播
output = model(X)
loss = critertion(output, target)
avg_train_loss += loss
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 每隔800个iteration输出一次损失并计算模型在测试集上的准确率
if (iteration + 1) % INTERVAL == 0:
avg_train_loss /= INTERVAL
train_loss.append(avg_train_loss.item())
# 计算模型在测试集上的预测准确率
with torch.no_grad():
for test_word in test_data:
X = word2tensor(test_word[:-1]).to(device)
target = torch.tensor(string.ascii_lowercase.index(test_word[-1])).to(device)
pred = model(X)
correct += (pred.argmax() == target).sum().item()
acc = correct / len(test_data)
test_acc.append(acc)
print(
f'Iteration: [{iteration + 1:04}/{len(train_data)}] | Train Loss: {avg_train_loss:.4f} | Test Acc: {acc:.4f}'
)
avg_train_loss, correct = 0, 0
print()
这里仅展示最后一个 epoch 的输出:
Epoch 5
--------------------------------------------------------------
Iteration: [0800/8000] | Train Loss: 1.2918 | Test Acc: 0.6000
Iteration: [1600/8000] | Train Loss: 1.1903 | Test Acc: 0.5910
Iteration: [2400/8000] | Train Loss: 1.2615 | Test Acc: 0.6075
Iteration: [3200/8000] | Train Loss: 1.2236 | Test Acc: 0.6015
Iteration: [4000/8000] | Train Loss: 1.2355 | Test Acc: 0.5925
Iteration: [4800/8000] | Train Loss: 1.1314 | Test Acc: 0.6050
Iteration: [5600/8000] | Train Loss: 1.2172 | Test Acc: 0.6045
Iteration: [6400/8000] | Train Loss: 1.1808 | Test Acc: 0.6140
Iteration: [7200/8000] | Train Loss: 1.2092 | Test Acc: 0.6185
Iteration: [8000/8000] | Train Loss: 1.1845 | Test Acc: 0.6040
绘制曲线:
step = INTERVAL / len(train_data)
plt.plot(np.arange(step, EPOCHS + step, step), train_loss, label="train loss")
plt.plot(np.arange(step, EPOCHS + step, step), test_acc, label="test acc")
plt.legend(loc="best", fontsize=12)
plt.xlabel('epoch')
plt.show()
从上图可以看出,模型在测试集上的预测准确率趋于 0.6 0.6 0.6,原因可能有如下几点: