- LLM 词汇表
落难Coder
LLMsNLP大语言模型大模型llama人工智能
Contextwindow“上下文窗口”是指语言模型在生成新文本时能够回溯和参考的文本量。这不同于语言模型训练时所使用的大量数据集,而是代表了模型的“工作记忆”。较大的上下文窗口可以让模型理解和响应更复杂和更长的提示,而较小的上下文窗口可能会限制模型处理较长提示或在长时间对话中保持连贯性的能力。Fine-tuning微调是使用额外的数据进一步训练预训练语言模型的过程。这使得模型开始表示和模仿微调数
- 【有啥问啥】刷爆各大榜单的Reflection 70B模型背后的错误自我纠正(Reflection-Tuning)技术解析:一种革新AI模型的方法
Chauvin912
大模型行业调研人工智能算法
刷爆各大榜单的Reflection70B模型背后的错误自我纠正(Reflection-Tuning)技术解析:一种革新AI模型的方法在快速发展的AI领域,尤其是大型语言模型(LLM)的竞争中,错误自我纠正技术(Reflection-Tuning)正逐步成为提升模型性能的关键突破。该技术通过赋予模型自我检测和纠正错误的能力,显著提高了输出的准确性和可靠性。本文将深入解析Reflection-Tunn
- 大模型多机多卡脚本实例 - 增量预训练 -accelerate和deepspeed命令多机多卡训练有什么不同
AI生成曾小健
大模型/增量预训练CPT深度学习python机器学习
第一步,同步权重ls-l/data/xxx/gpu008/MoeRemake/train/etuning/LLaMA-Factory2/models/xxx-Base-10B-200k-Llama第二步,同步环境:./scp_batch.sh"/data/xxx/miniconda3/envs/etuning4/""/data/vayu/miniconda3/envs/etuning4/"gpu0
- 超越传统:Reflection 70B如何革新AI语言处理
黑金IT
人工智能AI编程
Reflection70B:AI语言模型的新里程碑AI领域迎来了革命性的变革,HyperWrite公司推出的开源AI大模型Reflection70B,以其卓越的性能在多个基准测试中超越了GPT-4o和Llama3.1。这款基于Meta的Llama3.170BInstruct构建的模型,采用了先进的“Reflection-Tuning”技术,能够在最终确定回答前检测并纠正自身的错误,显著提高了输出的
- mysql5.7 myisam 优化_MySQL5.7优化配置参数
weixin_39866974
mysql5.7myisam优化
#Otherdefaulttuningvalues#MySQLServerInstanceConfigurationFile#----------------------------------------------------------------------#GeneratedbytheMySQLServerInstanceConfigurationWizard###Installatio
- 大模型推理框架 RTP-LLM 架构解析
阿里技术
架构LLM推理阿里巴巴RPT
RTP-LLM是阿里巴巴智能引擎团队推出的大模型推理框架,支持了包括淘宝、天猫、闲鱼、菜鸟、高德、饿了么、AE、Lazada等多个业务的大模型推理场景。RTP-LLM与当前广泛使用的多种主流模型兼容,使用高性能的CUDAkernel,包括PagedAttention、FlashAttention、FlashDecoding等,支持多模态、LoRA、P-Tuning、以及WeightOnly动态量化
- LLM系列(3):探索大模型RLHF优化之道:DeepSpeed-Chat超快速入门,对齐训练精度提升一步到位
汀、人工智能
LLM工业级落地实践人工智能promptLLM自然语言处理大模型RLHFDeepSpeed
LLM系列(3):探索大模型RLHF优化之道:DeepSpeed-Chat超快速入门,对齐训练精度提升一步到位随着ChatGPT的惊艳表现,各类大模型产品如雨后春笋丛出不穷。作为有一定算法能力的同学一定会想是否可以自己在有限的物理条件下去定制化自己的大模型。学术界对此也进行了一定的研究,如PromptTuning的技术等(不调试原始大模型,只调试相关的Prompt)。最近微软做了一个Deepspe
- 百篇论文博文导航AI工程之路:FT、KG、RAG与Agent技术全方位探索
汀、人工智能
AIAgent人工智能深度学习机器学习自然语言处理大模型AgentRAG
百篇论文博文导航AI工程之路:FT、KG、RAG与Agent技术全方位探索1.FTScalingDowntoScaleUp:AGuidetoParameter-EfficientFine-Tuning:https://arxiv.org/abs/2303.15647TowardsaUnifiedViewofParameter-EfficientTransferLearning:https://ar
- 【大模型】Agent基础知识
idiotyi
大模型人工智能自然语言处理
目录1.基本框架2.常见推理模式2.1ReAct:SynergizingReasoningandActinginLanguageModels2.2Reflection2.3LATS:LanguageAgentsTreeSearch3.微调3.1全模型微调(FullModelFine-Tuning)3.2冻结部分层微调(Layer-wiseFine-Tuning)3.3适配器(Adapters)3.
- 深度解析:大模型微调的原理、应用与实践
longfei.li
人工智能神经网络
引言最近在公司落地AI产品的过程中,与团队小伙伴深入探讨和测试了大模型微调,同时也跟多个业内专家进行了交流和学习。相信很多人在实际落地大模型应用的时候都会有个疑问:到底要不要做微调模型?我的结论是在实际落地的过程中绝大多数场景是不需要做的,所以今天主要跟大家分享一下什么是Fine-tuning、Fine-tuning的原理以及Fine-tuning的应用,以帮助大家在工作中更好的理解大模型微调。什
- CLIP-Adapter: Better Vision-Language Models with Feature Adapters
Tsukinousag
对比语言图像预训练(CLIP)虽然prompt-tuning用于textualinputs,但是建议CLIPAdapter在视觉或语言分支上使用功能适配器进行fine-tuneCLIPAdapter采用了一个额外的瓶颈层来学习新的特征,并将剩余的特征与原始的预训练特征进行混合。为了更好地适应vision语言模型,使用功能适配器,而不是快速调整1.ClassifierWeightGeneration
- MasaCtrl:Tuning-free mutual self-attention control for consistent image synthesis and editing
Kun Li
图像视频生成大模型stablediffusion
https://github.com/TencentARC/MasaCtrl/issues/13https://github.com/TencentARC/MasaCtrl/issues/13QuestionaboutMask·Issue#31·TencentARC/MasaCtrl·GitHub
- Code Llama: Open Foundation Models for Code论文阅读
yang_daxia
大模型llamacodellama
整体介绍CodeLlama发布了3款模型,包括基础模型、Python专有模型和指令跟随模型,参数量分别为7B、13B、34B和70B。这些模型在长达16ktokens的序列上训练。都是基于Llama2。作者针对infilling(FIM)、长上下文、指令专门做了微调long-contextfine-tuning(LCFT).codellama细节CodeLlama模型家族初始化:所有CodeLla
- 大模型18:微调大模型方法PEFT(LoRA等) — 训练 “ChatGLM2“ 项目
bluewelkin
大模型
微调大模型的方法之一是PEFT(Parameter-EfficientFine-Tuning),其中包括LoRA(Low-RankAdaptation)等技术。PEFT方法能够在不显著增加计算资源消耗的情况下,微调大模型,从而适应特定任务。这种方法特别适用于像“ChatGLM2”这样的预训练大模型。什么是PEFT(Parameter-EfficientFine-Tuning)?PEFT是一种优化微
- 大模型19:微调大模型方法
bluewelkin
大模型
有监督微调(SFT)、奖励模型(RM)训练,以及基于人类反馈的强化学习(RLHF)训练1.有监督微调(SFT-SupervisedFine-Tuning)数据处理数据收集:首先,需要收集大量的对话数据。这些数据通常包括人工标注的问答对,或者从已有的高质量对话系统中获取的数据集。数据预处理:对收集的数据进行清洗、标注和格式化。预处理包括移除噪音数据、分词、生成模型输入输出格式等。模型训练模型初始化:
- 大模型微调方法总结:LoRA、Adapter、Prefix-tuning、P-tuning、Prompt-tuning
百度_开发者中心
prompt人工智能大模型
随着深度学习技术的不断发展,大型预训练模型已成为许多任务的重要工具。然而,微调(finetuning)这些大模型以适应特定任务是一个复杂且计算密集型的过程。本文将重点介绍五种不同的微调方法:LoRA、Adapter、Prefix-tuning、P-tuning和Prompt-tuning,并对它们进行总结。LoRA(LearnedRepresentationsforFinetuning)LoRA是
- Prompt-Tuning:大模型微调技术
百度_开发者中心
prompt自然语言处理大模型
随着深度学习技术的不断发展,大模型(如GPT、BERT等)在各种自然语言处理(NLP)任务中取得了显著的成功。然而,训练和部署大模型需要大量的计算资源和时间,这限制了其在一些资源有限场景中的应用。为了解决这个问题,研究人员提出了各种大模型微调技术,以减少模型的大小和计算复杂度,同时保持模型的性能。本文将重点介绍一些常见的大模型微调技术,包括Adapter-Tuning、Prefix-Tuning、
- 大模型微调技术(Adapter-Tuning、Prefix-Tuning、Prompt-Tuning(P-Tuning)、P-Tuning v2、LoRA)_adapter微调 p tuning
Cc不爱吃洋葱
prompt
2022年11月30日,ChatGPT发布至今,国内外不断涌现出了不少大模型,呈现“百模大战”的景象,比如ChatGLM-6B、LLAMA、Alpaca等模型及在此模型基础上进一步开发的特定领域的大模型。今年3月15日,GPT-4发布后,也出现了一些多模态的大模型,比如百度的文心一言、讯飞星火认知大模型等等。要想训练一个针对特定领域的大模型,如果采用全量参数微调(FullParameterFutu
- Rocksdb Tuning
MOONICK
数据库
Rocksdb配置选项尤其繁多,想要获得真正的高性能,需要进行详细的调优,这是项复杂的工作,需要在实践中积累经验:https://www.jianshu.com/p/8e0018b6a8b6https://cloud.tencent.com/developer/article/2329992调优RocksDB通常就是在三个amplification之间做取舍:Writeamplification-
- 大模型应用中什么是SFT(监督微调)?
Chauvin912
大模型语言模型深度学习算法
大模型应用中什么是SFT(监督微调)?一、SFT的基本概念监督微调(SupervisedFine-Tuning,SFT)是对已经预训练的模型进行特定任务的训练,以提高其在该任务上的表现。预训练模型通常在大量通用数据上进行训练,学到广泛的语言知识和特征。在SFT过程中,利用特定任务的数据,对模型进行进一步调整,使其更适合该任务。二、SFT的原理SFT的过程可以分为以下几个步骤:预训练模型:在大规模通
- AI推介-大语言模型LLMs论文速览(arXiv方向):2024.02.20-2024.02.25
小小帅AIGC
LLMs论文时报人工智能语言模型深度学习LLM大语言模型论文推送
论文目录~1.Zero-shotcross-lingualtransferininstructiontuningoflargelanguagemodel2.ScalingEfficientLLMs3.LLM-DA:DataAugmentationviaLargeLanguageModelsforFew-ShotNamedEntityRecognition4.WhoseLLMisitAnyway?L
- AI推介-大语言模型LLMs论文速览(arXiv方向):2024.02.25-2024.03.01
小小帅AIGC
LLMs论文时报人工智能语言模型自然语言处理LLM大语言模型深度学习论文推送
论文目录~1.ArithmeticControlofLLMsforDiverseUserPreferences:DirectionalPreferenceAlignmentwithMulti-ObjectiveRewards2.KeepingLLMsAlignedAfterFine-tuning:TheCrucialRoleofPromptTemplates3.Meta-TaskPrompting
- 大模型训练——PEFT与LORA介绍
MarkHD
人工智能深度学习机器学习
大模型训练中的PEFT(Parameter-EfficientFine-Tuning)与LoRA(Low-RankAdaptation)是两种重要的技术,它们在大型预训练模型的应用中发挥着重要作用。首先,让我们来了解一下PEFT。PEFT是一种参数高效的微调技术,由Huggingface发布。这种方法的核心思想是仅微调少量(额外)模型参数,同时冻结预训练LLM的大部分参数。这样做的好处是大大降低了
- 学习笔记:使用 Amazon Bedrock 进行图像生成
AmazonBedrock全新发布在2023年的亚马逊云科技re:Invent全球云计算大会上,最令人瞩目的一项更新莫过于AmazonBedrock的全新升级。亚马逊云科技此次为其大模型托管服务引入了Fine-tuning、Agents、KnowledgeBases和Guardrails等一系列创新功能。这些功能的加入意味着客户现在能以更加高效、智能和安全的方式构建各种应用,标志着亚马逊云科技在推
- 预训练和微调在迁移学习中的作用
一条小小yu
迁移学习人工智能机器学习
在机器学习和深度学习中,"pre-training"(预训练)和"fine-tuning"(微调)是两个常见且重要的概念,它们通常在迁移学习场景中使用,以提高模型在特定任务上的性能。预训练(Pre-training)预训练是指在一个大型且通常与目标任务相关但不完全相同的数据集上训练模型的过程。这个阶段的目的是让模型学习到一些通用的特征或知识,这些特征或知识可以帮助模型在后续的特定任务上表现更好。预
- 大模型微调大杂烩知识总结
lichunericli
LLM人工智能语言模型
1.前缀微调(Prefix-Tuning)前缀微调是一种针对预训练模型的微调方法,通过在模型输入前添加特定任务相关的连续前缀表示,从而引导模型生成适应特定任务的输出。在微调过程中,只更新前缀表示的参数,而预训练模型的参数保持不变。微调方法:首先,为每个任务设计一个可学习的前缀表示。然后,将这个前缀表示与输入序列进行拼接,输入到预训练模型中。最后,通过优化前缀表示的参数,使得模型能够生成适应特定任务
- Prompt Tuning:深度解读一种新的微调范式
lichunericli
LLM人工智能语言模型prompt
阅读该博客,您将系统地掌握如下知识点:什么是预训练语言模型?什么是prompt?为什么要引入prompt?相比传统fine-tuning有什么优势?自20年底开始,prompt的发展历程,哪些经典的代表方法?面向不同种类NLP任务,prompt如何选择和设计?面向超大规模模型,如何借助prompt进行参数有效性训练?面向GPT3,什么是In-ContextLearning?什么是Chain-Of-
- ACK Timeout 相关论文
小超超爱超超
论文中提到了ACKTimeout《AReal-TimeUpdatingAlgorithmofRTS-CTSThresholdtoEnhanceEDCAMACPerformanceinIEEE802.11eWirelessLANs》Timeout论文中《RTSThresholdSelf-TuningAlgorithmBasedonDelayAnalysison802.11DCF》提到冲突时间:
- 大模型推理优化实践:KV cache 复用与投机采样
阿里技术
RTP-LLM大模型KVcache推理优化投机采样
作者:米基一、背景RTP-LLM是阿里巴巴大模型预测团队开发的大模型推理加速引擎,作为一个高性能的大模型推理解决方案,它已被广泛应用于阿里内部。该引擎与当前广泛使用的多种主流模型兼容,并通过采用高性能的CUDA算子来实现了如PagedAttention和ContinuousBatching等多项优化措施。RTP-LLM还支持包括多模态、LoRA、P-Tuning、以及WeightOnly动态量化等
- 大语言模型ChatGLM + P-Tuning微调实践
North_D
AI人工智能人工智能自然语言处理chatgptnlptransformer深度学习机器学习
大语言模型ChatGLM+P-Tuning微调实践文章目录大语言模型ChatGLM+P-Tuning微调实践LLM微调基础本次实践环境说明ChatGLM部署以及激活conda环境安装依赖禁用W&B训练数据集、测试数据集准备微调参数调整(train.sh\evaluate.sh)参数说明备查训练推理验证可能会遇到的问题及解决LLM微调基础LLM微调可以对原有预模型进行专业领域知识的训练,相关领域知识
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key