- 目前人工智能的发展,判断10年、20年后的人工智能发展的主要方向,或者带动的主要产业
meisongqing
人工智能
根据2025年的最新行业研究和技术演进趋势,结合历史发展轨迹,未来10-20年人工智能发展的主要方向及带动的产业将呈现以下六大核心趋势:一、算力革命与底层架构优化核心地位:算力将成为类似“新能源电池”的基础设施,支撑大模型迭代和实时交互。中国通过DeepSeek等技术创新(如MLA注意力机制、FP8混合精度训练)突破算力瓶颈,实现与美国顶尖模型性能对标,成本降低至558万美元/项目。技术突破:量子
- C# WPF学习总结
战族狼魂
WPFC#c#wpf学习
经过一段时间的学习和实践,我对C#WPF(WindowsPresentationFoundation)有了更深入的理解。WPF作为一个强大的桌面应用程序开发框架,为开发者提供了丰富的UI控件、强大的数据绑定和灵活的布局系统。以下是我对C#WPF学习的一些总结:目录1.基础知识2.UI设计3.数据绑定4.动画和特效5.命令和路由事件6.自定义控件和扩展性7.性能优化和内存管理8.实战项目经验9.学习
- 深度学习之优化器Optimizer介绍
yueguang8
人工智能深度学习人工智能
优化器(Optimizer)是深度学习训练中非常关键的组件,它负责根据损失函数的梯度来更新模型参数,从而使模型性能不断提升。1.优化器的作用和重要性优化器是训练深度学习模型的核心组件之一。它负责根据损失函数的梯度来更新模型参数,推动模型性能不断提高。选择合适的优化器可以极大地影响模型的收敛速度和最终性能。2.优化器的基本原理优化器的基本思路是利用梯度下降法来最小化损失函数。每一步都根据当前梯度的方
- 文本挖掘+情感分析+主题建模+K-Meas聚类+词频统计+词云(景区游客评论情感分析)
请为小H留灯
聚类机器学习支持向量机人工智能深度学习
本文通过情感分析技术对景区游客评论进行深入挖掘,结合数据预处理、情感分类和文本挖掘,分析游客评价与情感倾向。利用朴素贝叶斯和SVM等模型进行情感预测,探讨满意度与情感的关系。通过KMeans聚类和LDA主题分析,提取游客关心的话题,提供优化建议,为未来研究提供方向。1.引言1.1背景与目的1.2旅游业发展与游客评论的重要性2.数据处理与分析2.1数据加载与预处理2.2游客评分与点赞量分析3.评论内
- 上万个Map运行时链接ApplicationMaster超时FAILED
500佰
大数据云计算bigdatamapreduce
#MapReduce业务常见故障#大数据#生产环境真实案例#MapReduce#批计算#离线业务#整理#经验总结说明:此篇总结MapReduce业务常见故障案例处理方案结合自身经历总结不易+关注+收藏欢迎留言更多专题(详见):MapReduce计算引擎详解--项目优化(指导书)上万个Map运行时链接ApplicationMaster超时FAILED症状Mapreduce任务会并发起几万个map,会
- 爬虫的精准识别:基于 User-Agent 的正则实现
Small踢倒coffee_氕氘氚
经验分享笔记
##摘要随着互联网技术的飞速发展,网络爬虫在数据采集、搜索引擎优化等领域的应用日益广泛。然而,恶意爬虫的存在也给网站安全和数据隐私带来了严重威胁。因此,精准识别爬虫行为成为网络安全领域的重要课题。本文提出了一种基于User-Agent正则表达式的爬虫识别方法,通过分析User-Agent字符串的特征,构建正则表达式规则,实现对爬虫的精准识别。实验结果表明,该方法具有较高的识别准确率和较低的误报率,
- 深度学习 常见优化器
Humingway
深度学习人工智能
一、基础优化器随机梯度下降(SGD)•核心:∇θJ(θ)=η*∇θJ(θ)•特点:学习率固定,收敛路径震荡大•适用场景:简单凸优化问题•改进方向:动量加速二、动量系优化器2.SGDwithMomentum•公式:v_t=γv_{t-1}+η∇θJ(θ)•效果:平滑梯度更新,加速收敛•经典参数:γ=0.9(多数场景推荐)三、自适应学习率家族3.Adagrad•创新:∇θJ(θ)_t=∇θJ(θ)/(
- 分子动力学仿真软件:GROMACS_(11).高级模拟技术
kkchenjj
分子动力学2仿真模拟模拟仿真分子动力学性能优化
高级模拟技术在分子动力学仿真软件中,高级模拟技术是提升仿真精度和效率的关键。这些技术不仅包括更复杂的模拟方法,还包括对现有方法的优化和扩展。本节将详细介绍一些常用的高级模拟技术,并通过具体的代码示例来说明如何在GROMACS中实现这些技术。1.温度和压力控制在分子动力学模拟中,温度和压力控制是非常重要的。适当的温度和压力控制可以确保系统在模拟过程中保持在所需的物理状态。GROMACS提供了多种温控
- 笔记:代码随想录算法训练营day42:LeetCode188.买卖股票的最佳时机IV,309.最佳买卖股票时机含冷冻期,714.买卖股票的最佳时机含手续费
jingjingjing1111
笔记动态规划leetcode
学习资料:代码随想录感觉还没有把这个股票的递归变成直觉的东西.anyway,每一天的各种状态都是从上一天的各种状态中优化出来的,到最后的再选择一个最大的状态,应该是没啥问题,不会有漏掉的情况188.买卖股票的最佳时机IV力扣题目链接思路:和上一题差不多,限制上买卖次数倒比不限制买卖次数复杂了不少要给上一题的代码套个循环classSolution{public:intmaxProfit(intk,v
- AI Agent在企业预算管理与成本控制中的应用
SuperAGI2025
DeepSeek人工智能大数据ai
AIAgent在企业预算管理与成本控制中的应用关键词:AIAgent、企业预算管理、成本控制、机器学习、预测模型、优化算法摘要:本文深入探讨了AIAgent在企业预算管理与成本控制中的应用。通过详细的背景介绍、核心概念解析、算法原理讲解和实际案例剖析,本文展示了AIAgent如何通过智能预测和优化算法,为企业带来更高的效率和精确度,从而实现成本控制和预算优化的目标。背景介绍核心概念AIAgent:
- Python爬虫实战:抓取电子图书平台图书信息与下载数据
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言网络爬虫信息可视化
前言电子图书平台汇集了海量的图书资源和丰富的信息,抓取这些数据可用于研究图书销售趋势、阅读偏好分析,甚至为书籍推荐系统提供数据支持。本文将详细介绍如何使用Python爬虫技术抓取电子图书平台的图书信息和下载数据。我们会涵盖从需求分析到代码实现的完整流程,探讨如何应对复杂的反爬机制,并使用最新的技术工具优化抓取过程。目录前言一、需求分析与目标1.1抓取目标1.2难点与挑战二、技术选型与工具2.1使用
- Redis- 秒杀场景
左灯右行的爱情
redis数据库缓存
秒杀什么是秒杀场景秒杀场景挑战有哪些高并发与性能挑战数据一致性挑战安全性挑战秒杀系统的架构设计前端策略服务层设计库存控制策略订单处理流程技术实现缓存设计与优化分布式锁与一致性保证消息队列应用安全防护措施什么是秒杀场景秒杀场景的本质是在极短时间内承受大量并发请求,同时保证有限商品的正确售卖。它具有三个核心特征:高并发(短时间内大量用户涌入)、资源有限(商品数量有限)和时效性强(活动在特定时间开始和结
- 前端打包优化相关 Webpack
怒放的生命1991
webpack前端webpacknode.js
前端打包优化相关Webpack打包时间的优化(基于VueCLI4+Webpack5)1.Webpack配置减少打包时间1.1对JS配置:排除node_modules和src中的打包内容在开发环境下,修改Webpack的JS规则,排除/node_modules和src目录中的JavaScript文件。这意味着node_modules和src目录中的JavaScript文件不会经过该规则定义的加载器处
- 利用 DeepSeek 总结运维知识库的总结报告
缘来是黎
webankpython
一、背景在运维工作中,知识库是重要的知识沉淀与共享工具。随着公司业务的发展,运维涉及的系统、设备和技术日益复杂,原有的运维知识库内容繁杂、缺乏条理,难以高效检索和利用。为了提升知识库的可用性,我尝试借助DeepSeek这一强大的AI工具对其进行总结与优化。二、问题分析知识碎片化:原知识库中的知识分散在不同文档和记录中,缺乏统一的组织架构,导致查找特定知识时需要耗费大量时间。分类不清晰:知识分类不够
- WebRTC技术在音视频处理上的难点剖析:EasyRTC嵌入式视频通话SDK的优化策略
Black蜡笔小新
EasyRTCwebrtc音视频大模型人工智能
在实时通信领域,WebRTC技术因其开源、高效、低延迟等特性而备受瞩目。然而,尽管WebRTC技术已经相对成熟,但在实际应用中仍然面临诸多挑战。一、网络相关问题(一)网络延迟与稳定性在网络基础设施薄弱或带宽有限的地区,实时通信质量会大打折扣。此外,不同网络运营商之间的差异以及网络拥塞高峰时段,也会导致延迟飙升、丢包率增加。EasyRTC解决方案:EasyRTC通过优化网络传输技术,采用先进的智能路
- Android高级组件实践:ViewPager详解与案例
Bachnroth
本文还有配套的精品资源,点击获取简介:ViewPager是Android开发中用于页面切换的组件,广泛应用于引导页、图片查看器和Tab布局等。它通过PagerAdapter管理页面,提供页面创建与销毁的方法实现。本篇详细解析了ViewPager的使用方法,包括如何设置Adapter、绑定ViewPager、添加页面指示器、监听页面改变、自定义滚动效果、优化性能、调整离屏页面策略、动态页面管理及与F
- 智能体群体决策在投资组合风险控制中的应用
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能人工智能物联网大数据ai
1.1引言1.1.1投资组合风险控制的重要性投资组合风险控制是金融领域中至关重要的一环。在市场波动和不确定性加剧的背景下,投资者面临着诸多风险,如市场风险、信用风险、流动性风险等。有效的投资组合风险控制能够帮助投资者降低风险、保持资产价值稳定,从而实现长期投资目标。投资组合风险控制的重要性体现在以下几个方面:降低风险:通过分散投资、优化资产配置等方式,减少单一资产的市场波动对整个投资组合的影响,降
- c++ 嵌套类(Nested Class)、局部类(Local Class)
JANGHIGH
C++c++开发语言
c++嵌套类(NestedClass)、局部类(LocalClass)一、嵌套类(NestedClass)典型场景示例:链表实现中的嵌套类二、局部类(LocalClass)典型场景示例:函数内部的策略类三、关键区别与注意事项注意事项四、总结C++中的嵌套类(NestedClass)和局部类(LocalClass)是两种特殊的类定义方式,用于优化代码组织和封装性。以下是详细说明和示例:一、嵌套类(N
- 深度学习中常用的优化器
无能者狂怒
深度学习计算机视觉人工智能深度学习算法
梯度下降是优化神经网络的首选方法。本文将介绍各种基于梯度下降的优化器,如Momentum,Adagrad以及Adam等等StochasticGradientDescent(SGD)MomentumAdagradRMSpropAdamAdaMax1:梯度下降假设梯度下降法是一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视
- 常见的深度学习优化器
青灯剑客
算法python人工智能机器学习自然语言处理深度学习
一直用优化器解决问题,但是没有对它进行一个系统的总结。。不对,系统的总结进行过,只是时过境迁,早已忘却。一、照进我脑海的几个家伙一开始学习的当然是SGD,只是学着学着就忘记了。后来呢,接触到网上介绍的几种常用的优化器,看着原理挺给力,可是记了好几次都记不住。直到遇到《百面机器学习》,它从最基本的原理出发,给了我一点灵感。(1)几种常用的优化器,详情见这里链接34(2)二、以为自己遇见了大海老师说,
- 【工厂老板必看】智能切割算法帮您省 30% 原材料!附真实案例——一维下料问题算法、cad c#二次开发
山水CAD筑梦人
CADC#二次开发算法
一、行业痛点:原材料浪费有多严重?现象:传统人工排料导致大量边角料,例如:某钢材厂每月因切割不合理损失15万元木材加工厂平均浪费率高达25%核心问题:无法兼顾切割数量与材料利用率人工计算耗时且容易出错二、解决方案:贪心算法和遗传算法切割优化系统技术原理(通俗解释):用贪心算法和遗传算法通过编程,自动生成最优切割方案,比人工排料效率高100倍以上!核心优势:省材料:原材料总根数减少20%-40%降成
- 如何设计高效的数据湖架构?
晴天彩虹雨
架构大数据数据仓库
1.引言在大数据时代,数据湖(DataLake)逐渐成为企业存储和处理海量数据的重要基础设施。相比于传统数据仓库,数据湖能够支持结构化、半结构化和非结构化数据,同时提供更灵活的存储与计算能力。然而,如何合理设计数据湖架构,优化存储策略、Schema演进以及数据生命周期管理,是数据架构师必须深入思考的问题。本篇文章将深入探讨数据湖架构的设计方法,结合Hudi、Iceberg、DeltaLake等技术
- Manus详解,看这一篇就够了
程序员鑫港
langchain数据库人工智能AI大模型Agent智能体
Monica公司发布了AIAgent智能体产品——Manus,是一款具备突破性技术的通用型AI代理,根据Manus官网(https://manus.im)技术白皮书和网络公开资料,整理Manus核心技术和应用信息如下,欢迎讨论。技术架构多智能体协作系统Manus采用规划代理、执行代理和验证代理的分工机制,模拟人类工作流程,提升复杂任务的处理效率。规划代理采用蒙特卡洛树搜索(MCTS)算法优化任务拆
- 多目标优化算法之NSGA-II、NSGA-III(附Matlab免费代码)
优化算法侠Swarm-Opti
智能优化算法算法matlab开发语言优化算法NSGA
引言NSGA-II和NSGA-III都是非支配排序遗传算法的变种,用于解决多目标优化问题,但它们在多个方面存在差异。相同点基本框架相似:两者都基于遗传算法的框架,包括初始化种群、非支配排序、选择、交叉和变异等操作非支配排序:都采用非支配排序技术,将种群中的个体划分为不同的前沿,识别非支配解集不同点适用目标数量不同:NSGA-II:适用于相对较少的目标数量,通常在2到4个目标之间,在处理较少目标的问
- WPF未来展望:紧跟技术发展趋势,探索新的可能性
xcLeigh
WPF从入门到精通wpfC#
WPF未来展望:紧跟技术发展趋势,探索新的可能性一、前言二、WPF与.NET技术的融合发展2.1拥抱.NETCore2.2利用.NET5及后续版本的新特性三、WPF在新兴技术领域的应用拓展3.1与云计算的结合3.2融入物联网生态四、WPF在用户体验和设计方面的创新4.1响应式设计4.2增强的动画和交互效果五、WPF开发工具和框架的演进5.1VisualStudio的持续优化5.2新的开发框架和库的
- 2023第14届蓝桥杯大赛软件赛省赛C/C++大学A组第8题题解:异或和之和
浴乎风乎
蓝桥杯c++算法
目录问题描述:方法一:暴力枚举(50%)方法二:前缀和优化(90%)方法三:前缀和+按位分解+乘法原理问题描述:给定一个数组Ai,分别求其每个子段的异或和,并求出它们的和。或者说,对于每组满足1≤L≤R≤n的L,R,求出数组中第L至第R个元素的异或和。然后输出每组L,R得到的结果加起来的值。输入格式:输入的第一行包含一个整数n。第二行包含n个整数Ai,相邻整数之间使用一个空格分隔。输出格式:输出一
- 点云空洞的边界识别提取 pso-bp 神经网络的模型来修复点云空洞 附python代码
点云-激光雷达-Slam-三维牙齿
激光雷达点云c++为主神经网络人工智能深度学习点云python
代码是一个Python程序,用于处理3D点云数据,特别是检测和修复点云中的孔洞区域。1.**导入库**:-`numpy`:用于数学运算。-`open3d`:用于处理3D数据和可视化。-`torch`:PyTorch库,用于深度学习。-`torch.nn`和`torch.optim`:PyTorch的神经网络和优化器模块。-`mpl_toolkits.mplot3d`和`matplotlib.pyp
- 基于CATIA VBA与Python的自动化音乐生成技术对比研究
Python×CATIA工业智造
python开发语言CATIA二次开发
在工程软件二次开发领域,CATIA也可以许多另类的玩法。通过CATIA自带的VBA可以演奏歌曲,但实际效果往往差强人意。为了进一步优化实际演奏效果,本文以自动生成林宥嘉《说谎》钢琴前奏旋律为案例,探讨两种语言在多媒体控制领域的技术实现差异。一、CATIAVBA实现:极简音频方案1.1技术原理PrivateDeclarePtrSafeFunctionBeepLib"kernel32"(ByValdw
- 详细介绍c++中的友元函数和友元类
成风693
c++开发语言
在C++中,友元(Friend)是一种特殊的机制,允许某个函数或类访问另一个类的私有(private)和保护(protected)成员。友元打破了类的封装性,但在某些情况下非常有用,例如需要实现某些特殊功能或优化性能时。1.友元函数(FriendFunction)友元函数是一个非成员函数,但它可以访问类的私有和保护成员。友元函数需要在类内声明,并使用friend关键字。1.1声明友元函数在类中声明
- Zookeeper性能优化与调优技巧精讲
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Zookeeper性能优化与调优技巧精讲1.背景介绍1.1什么是Zookeeper?ApacheZooKeeper是一个开源的分布式协调服务,为分布式应用程序提供高可用性和强一致性的协调服务。它主要用于解决分布式环境中的数据管理问题,如统一命名服务、配置管理、分布式锁、集群管理等。ZooKeeper的设计目标是构建一个简单且高效的核心,以确保最大程度的可靠性和可扩展性。1.2Zookeeper的应
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓