垃圾实时检测项目(已落地)

垃圾检测项目(已落地)

源码改进

import argparse
import time
import os

os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
from pathlib import Path
import uvicorn
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import matplotlib
import shutil

matplotlib.use('TkAgg')
import datetime

import json

import time

import uuid

from kafka import KafkaProducer

from kafka.errors import KafkaError
app = FastAPI()
import cv2 as zj
import torch
import torch.backends.cudnn as cudnn
from numpy import random
import numpy as np
from models.experimental import attempt_load
from utils.zhoujie import zhoujie_data, zhoujie_source, zhoujie_conf
from utils.original import LoadStreams, LoadImages, check_img_size, check_requirements, non_max_suppression, apply_classifier, scale_coords, \
    xyxy2xywh, strip_optimizer, set_logging, increment_path, plot_one_box, select_device1,select_device2, load_classifier, time_synchronized

producer = KafkaProducer(bootstrap_servers='h01:9092')

topic = 'test01'

# 处理跨域问题
origins = [
    "*",
    "http://localhost.tiangolo.com",
    "https://localhost.tiangolo.com",
    "http://localhost",
    "http://localhost:8888",
    "http://localhost:8888/distinguish/deposit",
    "http://172.16.11.167:8888/distinguish/deposit",
    "http://外网ip:端口号/distinguish/deposit",
    "http://外网ip:端口号",
    "http://172.16.15.18:8888/distinguish/deposit",
    "http://172.16.15.18:8888",
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

dict_json = {}


class Message(BaseModel):
    uuid: str
    img_base: str


@app.post("/distinguish/deposit")
async def json_send(obj: Message):
    uuid = obj.uuid
    img_base = obj.img_base
    defaultpath, source = zhoujie_source(uuid, img_base, opt.source)
    opt.source = defaultpath
    try:
        dict = detect(model)
        dict_json = dict
        msg_string = dict_json['msg_string']
        n = 0
        producer.send(topic, json.dumps(msg_string).encode())
        print("send:" + json.dumps(msg_string))
        time.sleep(0.5)
    except:
        opt.source = source
        msg_string = None
    opt.source = source
    return {'status': '10000', 'data': msg_string, 'return_path': uuid}


def detect(save_img=True):
    flag = 0
    alert_list = []
    global model
    output, saveput, source, weights, view_img, save_txt, imgsz = opt.output, opt.saveput, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(opt.saveput)  # increment run
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)
    else:
        shutil.rmtree(save_dir)
        os.mkdir(save_dir)

    out_dir = Path(opt.output)
    # Initialize
    set_logging()

    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            out_path = str(out_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if det is not None and len(det):
                # det xyxy,conf,class
                res = det.cpu().numpy()
                labels = res[:, -1].astype(int)
                labels_list = []

                for item in labels:
                    label = names[item]
                    labels_list.append(label)
                labels_arr = np.array(labels_list)

                # alert_list
                alert_list.append((res[:, 0:4], res[:, -2], res[:, -1], labels_arr))
                for item in alert_list:
                    labels_name = [str(i) for i in item[3]]
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                #      remove low conf target
                zhoujie_conf(det, names)

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_img or view_img:  # Add bbox to image
                        label = f'{names[int(cls)]} {conf:.2f}'
                        label_name = label.split(' ')[0]
                        if label_name == 'trash':
                            plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
                        data = det
                        data = data.cpu().numpy()
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                string = zhoujie_data(data, labels_name)
                dict = {'msg_string': string}
            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                zj.imshow(str(p), im0)

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    zj.imwrite(save_path, im0)
                    if len(alert_list):
                        zj.imwrite(out_path, im0)
                else:  # 'video'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, zj.VideoWriter):
                            vid_writer.release()  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(zj.CAP_PROP_FPS)
                        w = int(vid_cap.get(zj.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(zj.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = zj.VideoWriter(save_path, zj.VideoWriter_fourcc(*fourcc), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")
    return dict


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default='weights/gaokong.pt', help='model.pt path(s)')
    parser.add_argument('--source', type=str, default='ZhouJie/images', help='source')  # file/folder, 0 for webcam
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
    parser.add_argument('--saveput', type=str, default='ZhouJie/saveput', help='saveput folder')  # saveput folder
    parser.add_argument('--output', type=str, default='ZhouJie/output', help='output folder')  # output folder
    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3')
    parser.add_argument('--view-img', action='store_true', help='display results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    opt = parser.parse_args()
    check_requirements()

    with torch.no_grad():
        device = select_device1(opt.device)
        model = attempt_load(opt.weights, map_location=device)
        half = device.type != 'cpu'  # half precision only supported on CUDA
        if half:
            model.half()  # to FP16
        uvicorn.run(app=app, host="172.16.15.18", port=8888)

使用shell编程启动

#!/bin/bash

PROG_NAME="output1.py"

function check() {
    PID=$(ps aux | grep $1 | grep -v grep | awk '{print $2}')
    if [[ "${PID[@]}" != "" ]];then
        echo "Process already exist"
        exit 1
    fi
}

function check_start() {
    PID=$(ps aux | grep $1 | grep -v grep | awk '{print $2}')
    if [[ "${PID[@]}" != "" ]];then
        echo "Service start successfully: $1"
    fi
}

function stop_service() {
    PID=$(ps aux | grep $1 | grep -v grep | awk '{print $2}')
    if [[ "${PID[@]}" != "" ]];then
        ps -ef | grep $1 | grep -v grep | cut -c 9-15 | xargs kill -9
        test $? -eq 0 && echo "Process has been killed: $1"
    else
        echo "Process is not running: $1"
    fi
}

function start_service() {
    check ${PROG_NAME}
    nohup python  ${PROG_NAME} >/dev/null  2>&1 &
    check_start ${PROG_NAME}
}


case $1 in
        start)
                start_service
                ;;
        stop)
                stop_service ${PROG_NAME}
                ;;
        restart)
                stop_service ${PROG_NAME}
                sleep 1
                start_service
                ;;
        *)
                echo "Usage: bash $0 start | stop | restart"
                ;;
esac

启动方法

conda activate zhoujie
./tbyoung.sh start

你可能感兴趣的:(垃圾检测,YOLO,V5)