[Games101] Lecture 03-04 Transformation

Transformation

2D 线性变换

  • 线性变换:变换能够用矩阵乘法得到

可以说,Linear Transformation = Matrices (of the same dimension)

我们将如下所示的简单矩阵乘法定义为对向量 ( x , y ) T (x, y)^{T} (x,y)T 的线性变换。
[ a 11 a 12 a 21 a 22 ] [ x y ] = [ a 11 x + a 12 y a 21 x + a 22 y ] \left[\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} a_{11} x+a_{12} y \\ a_{21} x+a_{22} y \end{array}\right] [a11a21a12a22][xy]=[a11x+a12ya21x+a22y]

缩放 (scale)

缩放变换是一种沿着坐标轴作用的变换,定义如下:
scale ⁡ ( s x , s y ) = [ s x 0 0 s y ] \operatorname{scale}\left(s_{x}, s_{y}\right)=\left[\begin{array}{cc} s_{x} & 0 \\ 0 & s_{y} \end{array}\right] scale(sx,sy)=[sx00sy]
即除了 ( 0 , 0 ) T (0,0)^{T} (0,0)T 保持不变之外,所有的点变为 ( s x x , s y y ) T \left(s_{x} x, s_{y} y\right)^{T} (sxx,syy)T

剪切 (shearing)

shear 变换直观理解就是把物体一边固定,然后拉另外一边,定义如下:
s h e a r − x ( s ) = [ 1 s 0 1 ] , s h e a r − y ( s ) = [ 1 0 s 1 ] shear-x(s)=\left[\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right], \\shear-y (s)=\left[\begin{array}{ll}1 & 0 \\ s & 1\end{array}\right] shearx(s)=[10s1],sheary(s)=[1s01]

  • 拉向 x x x

[Games101] Lecture 03-04 Transformation_第1张图片

  • 拉向 y y y

preview

旋转 (rotation)

  • 在无特殊说明的情况下,默认关于 ( 0 , 0 ) (0,0) (0,0) 点,逆时针方向旋转 θ \theta θ 角度(弧度)的公式如下

R θ = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] \mathbf{R}_{\theta}=\left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right] Rθ=[cosθsinθsinθcosθ]

推导如下

齐次坐标

  • 以上的线性变换矩阵不能描述平移变换,为了统一平移变换和线性变换(以上三种变换),引入平移变换

定义 2D 坐标和 2D向量如下

  • 2D 坐标: ( x , y , 1 ) T (x,y,1)^T (x,y,1)T
  • 2D 向量: ( x , y , 0 ) T (x,y,0)^T (x,y,0)T
    • 由于向量具有平移不变性,第3维的0保护了向量不会因为平移而改变

齐次坐标下向量和点的操作

  • vector + vector = vector

  • point – point = vector

  • point + vector = point (一个点沿着向量移动)

  • point + point = 两个点的中点

此外,当第三维为 w ( w ≠ 0 ) w(w\ne 0) w(w=0)时,定义
( x y w )  is the  2 D  point  ( x / w y / w 1 ) , w ≠ 0 \left(\begin{array}{c} x \\ y \\ w \end{array}\right) \text { is the } 2 \mathrm{D} \text { point }\left(\begin{array}{c} x / w \\ y / w \\ 1 \end{array}\right), w \neq 0 xyw  is the 2D point  x/wy/w1 ,w=0

仿射变换

  • 仿射变换使用一个矩阵统一了所有操作
  • 先应用线性变换再应用平移变换
image-20220807165635765

仿射变换下 2D 变换的描述

Scale

S ( s x , s y ) = ( s x 0 0 0 s y 0 0 0 1 ) \mathbf{S}\left(s_{x}, s_{y}\right)=\left(\begin{array}{ccc} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{array}\right) S(sx,sy)= sx000sy0001

Rotation

R ( α ) = ( cos ⁡ α − sin ⁡ α 0 sin ⁡ α cos ⁡ α 0 0 0 1 ) \mathbf{R}(\alpha)=\left(\begin{array}{ccc} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{array}\right) R(α)= cosαsinα0sinαcosα0001

Translation

T ( t x , t y ) = ( 1 0 t x 0 1 t y 0 0 1 ) \mathbf{T}\left(t_{x}, t_{y}\right)=\left(\begin{array}{ccc} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{array}\right) T(tx,ty)= 100010txty1

逆变换

  • 使用逆矩阵
  • M − 1 \mathbf{M}^{-1} M1 is the inverse of transform M \mathbf{M} M in both a matrix and geometric sense
image-20220807170002153

复合变换

  • 复杂变换可由简单变换得到
  • 变换的顺序非常重要,如先旋转再平移和先平移再旋转得到的结果不同
  • 矩阵变换不满足交换律
  • 计算是右结合的

3D 线性变换

再次使用齐次坐标描述

  • 3D point = ( x , y , z , 1 ) T =(x, y, z, 1)^{T} =(x,y,z,1)T
  • 3D vector = ( x , y , z , 0 ) T =(x, y, z, 0)^{T} =(x,y,z,0)T
  • In general, ( x , y , z , w ) ( w ≠ 0 ) (x, y, z, w)(w \ne0) (x,y,z,w)(w=0) is the 3D point: ( x / w , y / w , z / w ) (x / w, y / w, z / w) (x/w,y/w,z/w)
    • e.g. ( 1 , 0 , 0 , 1 ) (1, 0, 0, 1) (1,0,0,1) and ( 2 , 0 , 0 , 2 ) (2, 0, 0, 2) (2,0,0,2) both represent ( 1 , 0 , 0 ) (1, 0, 0) (1,0,0)
  • 先应用线性变换再应用平移变换

Use 4 × 4 4 \times 4 4×4 matrices for affine transformations
( x ′ y ′ z ′ 1 ) = ( a b c t x d e f t y g h i t z 0 0 0 1 ) ⋅ ( x y z 1 ) \left(\begin{array}{l} x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1 \end{array}\right)=\left(\begin{array}{lllc} a & b & c & t_{x} \\ d & e & f & t_{y} \\ g & h & i & t_{z} \\ 0 & 0 & 0 & 1 \end{array}\right) \cdot\left(\begin{array}{l} x \\ y \\ z \\ 1 \end{array}\right) xyz1 = adg0beh0cfi0txtytz1 xyz1

Scale

S ( s x , s y , s z ) = ( s x 0 0 0 0 s y 0 0 0 0 s z 0 0 0 0 1 ) \mathbf{S}\left(s_{x}, s_{y}, s_{z}\right)=\left(\begin{array}{cccc} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) S(sx,sy,sz)= sx0000sy0000sz00001

Translation

T ( t x , t y , t z ) = ( 1 0 0 t x 0 1 0 t y 0 0 1 t z 0 0 0 1 ) \mathbf{T}\left(t_{x}, t_{y}, t_{z}\right)=\left(\begin{array}{cccc} 1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1 \end{array}\right) T(tx,ty,tz)= 100001000010txtytz1

? Rotation

  • around x − , y − x-, y- x,y, or z z z-axis

  • sin ⁡ α \sin \alpha sinα 的正负号由右手定则确定,顺序是 x → z x\to z xz

    image-20220807171648045

R x ( α ) = ( 1 0 0 0 0 cos ⁡ α − sin ⁡ α 0 0 sin ⁡ α cos ⁡ α 0 0 0 0 1 ) R y ( α ) = ( cos ⁡ α 0 sin ⁡ α 0 0 1 0 0 − sin ⁡ α 0 cos ⁡ α 0 0 0 0 1 ) R z ( α ) = ( cos ⁡ α − sin ⁡ α 0 0 sin ⁡ α cos ⁡ α 0 0 0 0 1 0 0 0 0 1 ) \begin{aligned} \mathbf{R}_{x}(\alpha) &=\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \\ \mathbf{R}_{y}(\alpha) &=\left(\begin{array}{cccc} \cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \\ \mathbf{R}_{z}(\alpha) &=\left(\begin{array}{cccc} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \end{aligned} Rx(α)Ry(α)Rz(α)= 10000cosαsinα00sinαcosα00001 = cosα0sinα00100sinα0cosα00001 = cosαsinα00sinαcosα0000100001

  • 所有的 3D 变换都可以被描述为在 x , y , z x,y,z x,y,z 轴上的旋转
    • 也叫欧拉角
    • Often used in flight simulators: roll, pitch, yaw

R x y z ( α , β , γ ) = R x ( α ) R y ( β ) R z ( γ ) \mathbf{R}_{x y z}(\alpha, \beta, \gamma)=\mathbf{R}_{x}(\alpha) \mathbf{R}_{y}(\beta) \mathbf{R}_{z}(\gamma) Rxyz(α,β,γ)=Rx(α)Ry(β)Rz(γ)

Rodrigues’ Rotation Formula

Rotation by angle α \alpha α around axis n n n
R ( n , α ) = cos ⁡ ( α ) I + ( 1 − cos ⁡ ( α ) ) n n T + sin ⁡ ( α ) ( 0 − n z n y n z 0 − n x − n y n x 0 ) ⏟ N \mathbf{R}(\mathbf{n}, \alpha)=\cos (\alpha) \mathbf{I}+(1-\cos (\alpha)) \mathbf{n} \mathbf{n}^{T}+\sin (\alpha) \underbrace{\left(\begin{array}{ccc} 0 & -n_{z} & n_{y} \\ n_{z} & 0 & -n_{x} \\ -n_{y} & n_{x} & 0 \end{array}\right)}_{\mathbf{N}} R(n,α)=cos(α)I+(1cos(α))nnT+sin(α)N 0nznynz0nxnynx0

View / Camera Transformation

Think about how to take a photo

  • Find a good place and arrange people (model transformation)
  • Find a good “angle” to put the camera (view transformation)
  • Cheese! (projection transformation 将三维空间投影到二维视图上)

Projection transformation

Orthographic projection

正则投影的步骤

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Fx3Pqwmp-1660291810051)(https://cdn.jsdelivr.net/gh/QiuHong-1202/FigureBed/2021/202208071729657.png)]

正则立方体

  • map a cuboid [ l , r ] × [ b , t ] × [ f , n ] [l, r] \times [b, t] \times [f, n] [l,r]×[b,t]×[f,n] to the “canonical (正则、规范、标准)” cube [ − 1 , 1 ] 3 [-1, 1]^3 [1,1]3
    • 因为是朝着 z z z 轴负方向看,所以坐标小的是更远的 f f f ,坐标大的是更近的 n n n

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZTM6RjtF-1660291810052)(https://cdn.jsdelivr.net/gh/QiuHong-1202/FigureBed/2021/202208071733145.png)]

正则投影的变换矩阵

Translate (center to origin) first, then scale (length/width/height to 2)
M ortho  = [ 2 r − l 0 0 0 0 2 t − b 0 0 0 0 2 n − f 0 0 0 0 1 ] [ 1 0 0 − r + l 2 0 1 0 − t + b 2 0 0 1 − n + f 2 0 0 0 1 ] M_{\text {ortho }}=\left[\begin{array}{cccc} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{n-f} & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]\left[\begin{array}{cccc} 1 & 0 & 0 & -\frac{r+l}{2} \\ 0 & 1 & 0 & -\frac{t+b}{2} \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1 \end{array}\right] Mortho = rl20000tb20000nf200001 1000010000102r+l2t+b2n+f1

Perspective projection

透视投影的步骤

  • First “squish” the frustum into a cuboid ( n → n , f → f ) ( M p e r s p → o r t h o ) (n \to n, f \to f) (M_{persp\to ortho}) (nn,ff)(Mpersportho) (将远平面挤压为与近平面相同的大小)
    • 挤压规则
      • 近平面永远不变,任何点在近平面上不变
      • 远平面 z z z 值不变,任何远平面上的点 z z z 值不变
      • 远平面的中心不变
  • Do orthographic projection ( M o r t h o M_{ortho} Mortho) (做正则投影)
[Games101] Lecture 03-04 Transformation_第2张图片

透视投影的变换矩阵推导

计算机图形学二:视图变换(坐标系转化,正交投影,透视投影,视口变换)

透视投影的变换矩阵

M per  = M ortho  M persp  →  ortho  \mathrm{M}_{\text {per }}=\mathrm{M}_{\text {ortho }} \mathrm{M}_{\text {persp } \rightarrow\text { ortho }} Mper =Mortho Mpersp  ortho 

M per  = [ 2 r − l 0 0 0 0 2 t − b 0 0 0 0 2 n − f 0 0 0 0 1 ] [ 1 0 0 − r + l 2 0 1 0 − t + b 2 0 0 1 − n + f 2 0 0 0 1 ] [ n 0 0 0 0 n 0 0 0 0 n + f − f n 0 0 1 0 ] \mathrm{M}_{\text {per }}=\left[\begin{array}{cccc} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{n-f} & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]\left[\begin{array}{cccc} 1 & 0 & 0 & -\frac{r+l}{2} \\ 0 & 1 & 0 & -\frac{t+b}{2} \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1 \end{array}\right] \left[\begin{array}{cccc} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -f n \\ 0 & 0 & 1 & 0 \end{array}\right] Mper = rl20000tb20000nf200001 1000010000102r+l2t+b2n+f1 n0000n0000n+f100fn0

你可能感兴趣的:(计算机图形学,图形渲染)