Catalan数表达式完整推导

文章目录

  • 写在前面
  • 求解

写在前面

推导一下Catalan数的表示式,主要用到生成函数的方法,主要难点是幂级数的计算。

求解

Catalan数的递推关系满足:
c n = ∑ j = 0 n − 1 c j c n − 1 − j , ( n ≥ 1 , c 0 = c 1 = 1 ) c_n=\sum_{j=0}^{n-1}c_{j}c_{n-1-j},\qquad (n\geq1,c_0=c_1=1) cn=j=0n1cjcn1j,(n1,c0=c1=1)

C ( x ) = ∑ n ≥ 0 c n x n , C(x)=\sum_{n\geq0}c_nx^n, C(x)=n0cnxn,
于是有:
∑ n ≥ 1 c n x n = C ( x ) − 1 = ∑ n ≥ 1 ∑ j = 0 n − 1 c j c n − 1 − j x n = x ∑ n ≥ 1 ∑ j = 0 n − 1 c j c n − 1 − j x n − 1 = x ∑ n ≥ 0 ∑ j = 0 n c j c n − j x n = x ∑ j ≥ 0 c j x j ∑ n ≥ j c n − j x n − j = x C ( x ) ⋅ C ( x ) \begin{aligned} \sum_{n\geq1}c_nx^n &=C(x)-1\\ &=\sum_{n\geq1}\sum_{j=0}^{n-1}c_jc_{n-1-j}x^n\\ &=x\sum_{n\geq1}\sum_{j=0}^{n-1}c_jc_{n-1-j}x^{n-1}\\ &=x\sum_{n\geq0}\sum_{j=0}^{n}c_jc_{n-j}x^{n}\\ &=x\sum_{j\geq0}c_jx^j\sum_{n\geq j}c_{n-j}x^{n-j}\\ &=xC(x)\cdot C(x) \end{aligned} n1cnxn=C(x)1=n1j=0n1cjcn1jxn=xn1j=0n1cjcn1jxn1=xn0j=0ncjcnjxn=xj0cjxjnjcnjxnj=xC(x)C(x)
即:
x C 2 ( x ) − C ( x ) + 1 = 0 , xC^2(x)-C(x)+1=0, xC2(x)C(x)+1=0,
立即解得:
C ( x ) = 1 2 x ( 1 ± 1 − 4 x ) , C(x)=\frac1{2x}(1\pm\sqrt{1-4x}), C(x)=2x1(1±14x ),
由幂级数收敛条件可知
C ( x ) = 1 2 x ( 1 − 1 − 4 x ) , C(x)=\frac1{2x}(1-\sqrt{1-4x}), C(x)=2x1(114x ),
展开上式:
C ( x ) = 1 2 x [ 1 − ∑ n ≥ 0 ( 1 2 n ) ( − 4 ) n x n ] = 1 2 x [ 1 − 1 − ∑ n ≥ 1 ( 1 2 n ) ( − 4 ) n x n ] = 1 2 x [ − ∑ n ≥ 1 ( 1 2 n ) ( − 4 ) n x n ] = − 1 2 ∑ n ≥ 1 ( 1 2 n ) ( − 4 ) n x n − 1 = − 1 2 ∑ n ≥ 0 ( 1 2 n + 1 ) ( − 4 ) n + 1 x n \begin{aligned} C(x) &=\frac1{2x}\left[1-\sum_{n\geq0}\binom{\frac12}{n}(-4)^nx^n\right]\\ &=\frac1{2x}\left[1-1-\sum_{n\geq1}\binom{\frac12}{n}(-4)^nx^n\right]\\ &=\frac1{2x}\left[-\sum_{n\geq1}\binom{\frac12}{n}(-4)^nx^n\right]\\ &=-\frac12\sum_{n\geq1}\binom{\frac12}{n}(-4)^nx^{n-1}\\ &=-\frac12\sum_{n\geq0}\binom{\frac12}{n+1}(-4)^{n+1}x^{n}\\ \end{aligned} C(x)=2x1[1n0(n21)(4)nxn]=2x1[11n1(n21)(4)nxn]=2x1[n1(n21)(4)nxn]=21n1(n21)(4)nxn1=21n0(n+121)(4)n+1xn
于是有:
c n = − 1 2 ( 1 2 n + 1 ) ( − 4 ) n + 1 c_n=-\frac12\binom{\frac12}{n+1}(-4)^{n+1} cn=21(n+121)(4)n+1
下面利用牛顿二项式定理化简上面的结果:
c n = − 1 2 ( 1 2 n + 1 ) ( − 4 ) n + 1 = ( − 1 ) n + 2 2 2 n + 1 1 2 ( 1 2 − 1 ) ( 1 2 − 2 ) ⋯ ( 1 2 − n − 1 + 1 ) ( n + 1 ) ! = ( − 1 ) n + 2 − n 2 2 n + 1 − n − 1 ( 2 n − 1 ) ! ! ( n + 1 ) ! = 2 n ( 2 n − 1 ) ! ! ( 2 n ) ! ! ( n + 1 ) ! ( n !   2 n ) = 1 n + 1 ( 2 n n ) \begin{aligned} c_n &=-\frac12\binom{\frac12}{n+1}(-4)^{n+1}\\[10pt] &=(-1)^{n+2}2^{2n+1}\frac{\frac12\left(\frac12-1\right)\left(\frac12-2\right)\cdots\left(\frac12-n-1+1\right)}{(n+1)!}\\ &=(-1)^{n+2-n}2^{2n+1-n-1}\frac{(2n-1)!!}{(n+1)!}\\ &=\frac{2^n(2n-1)!!(2n)!!}{(n+1)!(n!\,2^n)}\\ &=\frac1{n+1}\binom{2n}{n} \end{aligned} cn=21(n+121)(4)n+1=(1)n+222n+1(n+1)!21(211)(212)(21n1+1)=(1)n+2n22n+1n1(n+1)!(2n1)!!=(n+1)!(n!2n)2n(2n1)!!(2n)!!=n+11(n2n)

你可能感兴趣的:(Combinatorics)