- 主要空间数据挖掘方法
CodeYoung7
总结归纳数据挖掘地理信息
文章出自:http://blog.csdn.net/shaoz/article/details/6847925张新长马林兵等,《地理信息系统数据库》[M],科学出版社,2005年2月第二章第二节空间数据空间数据挖掘是多学科和多种技术交叉综合的新领域,其挖掘方法以人工智能、专家系统、机器学习、数据库和统计等成熟技术为基础。下面介绍近年来出现的主要空间数据挖掘方法。1、空间分析方法利用GIS的各种空间
- 【数据挖掘】ARFF格式与数据收集
布鲁惠比寿
数据挖掘数据挖掘人工智能
【数据挖掘】ARFF格式与数据收集三级目录1.ARFF格式与数据收集2.稀疏数据3.属性类型4.缺失值与不正确的值5.了解数据6.知识表达7.聚类机器学习算法训练数据挖掘分析数据共享与交换三级目录1.ARFF格式与数据收集ARFF(Attribute-RelationFileFormat)是一种用于存储数据集的文本文件格式,常用于机器学习和数据挖掘领域。它可以表示结构化数据,包括属性定义、关系信息
- 基于数据挖掘的股票预测系统
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1股票市场预测的挑战股票市场以其波动性和不可预测性而闻名。无数因素,从全球经济趋势到个别公司公告,都会影响股票价格。这使得准确预测股票价格极具挑战性,即使对经验丰富的投资者和金融分析师也是如此。1.2数据挖掘的兴起近年来,数据挖掘技术的出现为股票预测提供了新的可能性。数据挖掘是从大型数据集中提取有意义的模式和洞察力的过程。通过利用先进的算法和计算能力,数据挖掘可以揭示隐藏在海量金融
- 深度学习工厂的蓝图:拆解CUDA驱动、PyTorch与OpenCV的依赖关系
时光旅人01号
深度学习pytorchopencv
想象一下,你正在建造一座深度学习工厂,这座工厂专门用于高效处理深度学习任务(如训练神经网络)和计算机视觉任务(如图像处理)。为了让工厂顺利运转,你需要搭建基础设施、安装设备、设置生产线,并配备控制台来管理整个生产过程。以下是这座工厂的详细构建过程:1.工厂的基础设施:Ubuntu比喻:Ubuntu是工厂所在的土地和建筑,提供了基础设施和运行环境。作用:提供操作系统环境,支持安装和运行各种工具和框架
- 数据挖掘十大经典算法详解(附原理解析与代码示例)
IT程序媛-桃子
华为认证数据挖掘算法经验分享华为
1.PageRank(链接分析)应用场景:搜索引擎排名、社交网络分析核心原理PageRank通过网页之间的链接关系计算网页的重要性,影响力大的网页排名更高。网页影响力=所有入链页面的加权影响力之和阻尼因子D(通常设为0.85)用于模拟用户随机访问网页的行为代码示例importnetworkxasnxG=nx.DiGraph()G.add_edges_from([("A","B"),("A","C"
- 使用Python和OpenCV实现图像像素压缩与解压
东方佑
量子变法pythonopencv开发语言
在本文中,我们将探讨如何使用Python和OpenCV库来实现一种简单的图像像素压缩算法。我们将详细讨论代码的工作原理,并提供一个具体的示例来演示该过程。1.引言随着数字媒体的普及,图像处理成为了一个重要的领域。无论是为了减少存储空间还是加快网络传输速度,图像压缩技术都扮演着至关重要的角色。这里,我们提出了一种基于像素重复模式的简单压缩算法,它适用于具有大量连续相同像素值的图像。2.技术栈介绍2.
- 【干货】视频文件抽帧(opencv和ffmpeg方式对比)
zkFun
超硬干货Pythonopencvffmpeg人工智能
1废话不多说,直接上代码opencv方式importtimeimportsubprocessimportcv2,osfrommathimportceildefextract_frames_opencv(video_path,output_folder,frame_rate=1):"""使用OpenCV从视频中抽取每秒指定帧数的帧,并保存到指定文件夹。如果视频长度不是整数秒,则会在最后一帧时补充空白
- Python中的 redis keyspace 通知_python 操作redis psubscribe(‘__keyspace@0__ ‘)
2301_82243733
程序员python学习面试
最后Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习Python门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的Pytho
- macOS Monterey(MacOS 12) 系统升级cocoapods
cocoapods
老款MacBook系统Monterey(MacOS12)由于brew停止了从上游下载cocoapods提示不支持os12系统,无法安装最新版cocoapods,本文讲述了另一种方法来更新cocoapods原文链接:http://www.kovli.com/2024/12/18/old-macos-install-cocoapods/作者:Kovli重要通知:红宝书第5版2024年12月1日出炉了,
- 查看opencv版本信息
zhanghui9020
在VS2010中编写控制台C++程序:#include#include"cv.h"usingnamespacestd;main(){cout<<CV_VERSION;}运行即可打印安装的opencv的版本信息
- OpenCV的卡尔曼滤波器:实现和应用
雪域Code
opencv人工智能计算机视觉C/C++
OpenCV的卡尔曼滤波器:实现和应用卡尔曼滤波器(Kalmanfilter)是一种最优估计的算法,在众多领域有着广泛的应用,如控制系统、通信系统、机器人等。OpenCV作为一个计算机视觉库,也提供了对卡尔曼滤波器的支持。本文将介绍OpenCV中卡尔曼滤波器的基本原理、实现方法以及在图像处理中的应用。一、卡尔曼滤波器简介卡尔曼滤波器是一种用于状态估计和信号滤波的算法,主要针对线性、高斯分布的系统。
- 机器学习:支持向量机
小源学AI
人工智能支持向量机机器学习算法
基本概念1.什么是支持向量机支持向量机是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面对样本进行分割,分割的原则是间隔最大化(也就是数据集的边缘点到分界点的距离d最大)最终转化成一个凸二次规划问题来求解。通常的SVM用于二元分类问题,对于多元分类问题可将其分解为多个二元分类问题,在进行分类。2.最优分类边界什么才是最优分类边界?什么条
- 利用 OpenCV 进行棋盘检测与透视变换
萧鼎
python基础到进阶教程opencv人工智能计算机视觉
利用OpenCV进行棋盘检测与透视变换1.引言在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于摄像机标定、文档扫描、增强现实(AR)等场景。本篇文章将详细介绍如何使用OpenCV进行棋盘检测,并通过透视变换将棋盘区域转换为一个标准的矩形图像。我们将基于一段Python代码进行分析,代码的主要任务包括:读取图像并进行预处理(灰度转换、自适应直方图均衡化、去噪)检测边缘并提取棋盘区域计
- 对换脸、动嘴生成的视频做初筛
之群害马
音视频计算机视觉opencv
首尾帧人脸差异检测代码概述本脚本实现了一个简单的视频筛查系统,主要功能是通过比较视频首帧和尾帧中的人脸差异来判断视频是否合格。如果视频中没有人脸或存在其他异常情况,视频将被移动到错误目录中。具体来说,系统包含以下几个主要步骤:加载视频文件:尝试打开视频文件,并读取首帧和尾帧。人脸检测:使用OpenCV的Haar级联分类器检测视频首帧和尾帧中的人脸。人脸提取与标准化:从检测到的人脸区域中提取并标准化
- K-means聚类:解锁数据隐藏结构的钥匙
小村学长毕业设计
kmeans聚类机器学习
K-means聚类:解锁数据隐藏结构的钥匙在机器学习的广阔领域中,无监督学习以其独特的魅力吸引了众多研究者和实践者。其中,K-means聚类作为一种经典且实用的无监督学习算法,以其简单高效的特点,广泛应用于市场细分、图像分割和基因聚类等领域。本文将深入探讨K-means聚类的工作原理、应用实例及其在这些领域中的具体应用,旨在揭示其如何智能划分数据,解锁隐藏结构,为相关领域提供精准导航。一、K-me
- 机器学习基本篇
胖胖的小肥猫
机器学习
1基本概念机器学习,分为回归,分类,聚类,降维有监督学习回归,分类,有特征,有标签,进行训练,然后对新数据进行预测无监督学习聚类,降维。题目越多,训练越好,2基本流程数据预处理——模型训练与评估可以优化为获取数据——数据预处理——EDA分析——特征工程——模型训练——可解释性分析2.0数据获取利用kaggle,天池等平台的开源数据,2.1预处理目的:让数据更符合逻辑让数据更容易计算借助函数实现变换
- 解锁机器学习核心算法 | 支持向量机:机器学习中的分类利刃
紫雾凌寒
AI炼金厂机器学习算法支持向量机python深度学习分类人工智能
一、引言在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的“十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、降维算法、梯度增强算法。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这十大算法中,支持向量机(Suppor
- 使用OpenCV在Visual Studio上编译x86或x64平台的应用程序
程序世界航海
opencvvisualstudio人工智能编程
OpenCV是一个广泛使用的计算机视觉库,它提供了丰富的图像处理和计算机视觉算法。如果你想在VisualStudio上编译一个使用OpenCV的应用程序,并且需要针对特定的x86或x64平台进行优化,那么本文将为你提供一些指导。以下是在VisualStudio中编译x86或x64平台上的OpenCV应用程序的步骤:步骤1:安装VisualStudio和OpenCV首先,确保你已经安装了最新版本的V
- 用realsense d435i传感器在实际环境中跑ORB_SLAM3,顺带解决一部分编译问题
睫力上爬
SLAM日常折腾传感器ORB_SLAM3
是的ORB_SLAM3来了,时隔五年,它来带的惊喜到底是啥呢?一个完全依赖于最大后验估计(MAP)的单/双目惯导融合系统高回召的地点识别功能(High-recallplacerecognition)第一个完整的多地图系统(multi-map)一个抽象的相机模型表示论文地址论文细节今天不说,今天主要先拿到代码,并且用自己的传感器试试实际效果编译终端拉代码记得提前安装好OpenCV,Eigen,和Pa
- ROS教程(六):Rviz显示USB摄像头(详细图文)
Leslie___Cheung
ROSROSrvizusb摄像头
目录前言一、RVIZ介绍1.数据类型介绍2.界面介绍二、配置RVIZ1.打开RVIZ2.添加模块三、启动总结(最重要的)前言上一章讲解了如何使用OpenCV调用电脑摄像头或USB摄像头,本章Leslie就讲解如何使用rviz来显示摄像头的画面。一、RVIZ介绍1.数据类型介绍参考ROS教程(四)->数据类型介绍2.界面介绍二、配置RVIZ1.打开RVIZ打开终端,输入rvi
- 【ORB_SLAM系列3】—— 如何在Ubuntu18.04中使用自己的单目摄像头运行ORB_SLAM3(亲测有效,踩坑记录)
啥也不会的研究僧
SLAM算法安装与实践记录ubuntu计算机视觉人工智能自动驾驶
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、ORB_SLAM3源码编译二、ORB_SLAM3实时单目相机测试1.查看摄像头的话题2.运行测试三.运行测试可能的报错1.报错一(1)问题描述(2)原因分析(3)解决2.报错二(1)问题描述(2)解决前言本次教程运行ORB_SLAM3,所需的环境如下:Ubuntu18.04、ros版本:melodicOpencv4.5
- 奥比中光3D机器视觉相机能连接halcon吗?
视觉人机器视觉
机器视觉3D3d数码相机视觉检测c#
奥比中光的设备与Halcon的兼容性可以通过以下方式实现:数据接口的通用性奥比中光的相机(如AstroPro、大白等)支持通过UVC协议获取彩色图像,深度数据则通过OpenNI或ROS2接口传输105。若Halcon支持这些协议或标准接口(如ROS消息、OpenCV图像流),则可通过直接调用或二次开发实现连接。例如,通过Python或C#脚本将图像数据从相机传输至Halcon的处理流程中。SDK与
- Ubuntu 安装 OpenCV (C++)
LegendBIT
程序开发--基本工具ubuntuopencvc++
版本详情:Ubuntu:22.04+5.15.0-133-genericgcc:11.4.0g++:11.4.0OpenCV:4.7.01.卸载OpenCV进入原先编译opencv的build目录,在该目录下打开终端,执行以下代码(如果build已经删除了,可以重新编译一遍该版本的opencv,然后在最后一步执行sudomakeuninstall)sudomakeuninstallcd..sudo
- QT5在windows下调用OpenCV库出现: undefined reference to `xxxxx' 错误解决办法(适用MinGW编译器)。
DS小龙哥
QT(C++)应用软件开发AI人工智能opencv
一、环境介绍window系统:win10X64QT版本:5.12QT5.12自带的MinGW编译器版本:mingw730_32与mingw730_64在QT的安装目录下,可以查看MinGW编译器的版本:二、使用OpenCV出现的问题在QT框架代码里使用老版本的分类器(cvLoad、cvHaarDetectObjects)处理图像时,正常编译没有问题,当使用新版本级联分类器(CascadeClass
- 使用opencv实现深度学习的图片与视频的超分辨率
人工智能研究所
人工智能之计算机视觉opencv深度学习视频超分辨率图片超分辨率
图片超分辨率什么是视频与图片的超分辨率,总结一下便是给一张分辨率比较低的图片,进行超分辨率的处理后,生成比较清晰的高分辨率的图片,上图图片完美解释了超分辨率的过程,由于不同的算法不同,处理的结果也不相同,本期我们介绍一下如何进行图片的超分辨率的处理。·EDSR模型图像超分辨率EDSR:EnhancedDeepResidualNetworksforSingleImageSuper-Resolutio
- OpenCV 简介
奇点创客
OpenCV
OpenCV(OpenSourceComputerVisionLibrary,开源计算机视觉库:http://opencv.org)是一个开放源代码库,其中包含数百种计算机视觉算法。本文档介绍所谓的OpenCV2.xAPI,与基于C的OpenCV1.xAPI相比,该API本质上是一套C++API(自OpenCV2.4发行以来,不推荐再使用CAPI,并且不使用“C”编译器进行测试)。OpenCV具有
- OpenCV机器学习(1)人工神经网络 - 多层感知器类cv::ml::ANN_MLP
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::ANN_MLP是OpenCV库中的一部分,用于实现人工神经网络-多层感知器(ArtificialNeuralNetwork-Multi-LayerPerceptron,ANN-MLP)。它提供了一种方式来创建和训练多层感知器模型,以解决分类、回归等
- [C#]C#使用yolov8的目标检测tensorrt模型+bytetrack实现目标追踪
FL1623863129
深度学习c#YOLO目标检测
【测试通过环境】win10x64vs2019cuda11.7+cudnn8.8.0TensorRT-8.6.1.6opencvsharp==4.9.0.NETFramework4.7.2NVIDIAGeForceRTX2070Super版本和上述环境版本不一样的需要重新编译TensorRtExtern.dll,TensorRtExtern源码地址:TensorRT-CSharp-API/src/T
- 树莓派通过手机热点,无线连接PC端电脑,进行远程操作
Epiphany_ZZW
树莓派智能手机
树莓派通过手机热点实现无线连接具有以下几点优势:1.该方式能够联网,方便在项目开发时下载一些数据包。2.该方式能够通过手机端查看树莓派IP地址(有些情况树莓派ip地址会发生改变)借鉴链接如下:树莓派的使用网线及无线连接方法及手机连接树莓派_opencv镜像具体操作方式如下:打开终端:pi@raspberrypi:~$sudonano/etc/wpa_supplicant/wpa_supplican
- 推荐学习图像处理的入门书:《Python图像处理实战》
天飓
学习感悟学习图像处理python
《Python图像处理实战》是一本全面介绍Python图像处理技术的实用指南,是由人民邮电出版社于2020年12月出版。这本书的作者桑迪潘·戴伊是一位兴趣广泛的数据科学家,主要研究机器学习、深度学习、图像处理和计算机视觉。在《Python图像处理实战》一书中,作者主要介绍了如何用Python图像处理库(如PIL、python-opencv、Scipy等),机器学习库(scikit-learn)和深
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc