前言
本篇文章是深度学习第五周的实验内容,主要使用pytorch来搭建简单的前馈神经网络,我们一起来学习吧(ง •_•)ง
pytorch实现
导入实验所需要的包:
import numpy as np
import torch
import math
import pandas as pd
import matplotlib.pyplot as plt
使用pytorch计算一组输入的净活性值z
净活性值z经过一个非线性函数f(·)后,得到神经元的活性值a
使用pytorch计算一组输入的净活性值:
# 2个特征数为5的样本
X = torch.rand([2, 5])
# 含有5个参数的权重向量
w = torch.rand([5, 1])
# 偏置项
b = torch.rand([1, 1])
# 使用'paddle.matmul'实现矩阵相乘
z = torch.matmul(X, w) + b
print("input X:", X)
print("weight w:", w, "\nbias b:", b)
print("output z:", z)
使用pytorch中相应函数torch.nn.Linear(features_in, features_out, bias=False)实现。
torch.nn.Linear((features_in, features_out, bias=False)函数是一个线性变换函数:
其中,features_in为输入样本的大小,features_out为输出样本的大小,bias默认为true。如果设置bias = false那么该层将不会学习一个加性偏差。
Linear()函数通常用于设置网络中的全连接层。
input = torch.rand([2, 5])
fc = torch.nn.Linear(5, 1, bias=True)
output = fc(input)
print('input: \n', X)
print('fc.weight: \n', fc.weight)
print('fc.bias: \n', fc.bias)
print('output: \n', z)
【思考题】加权相加与仿射变换之间有什么区别和联系?
线性变换有三个特点:
1.变换前是直线,变换后依然是直线;
2.直线比例保持不变
3.变换前是原点,变换后依然是原点
仿射变换有两个特点:
1.变换前是直线,变换后依然是直线;
2.直线比例保持不变
激活函数通常为非线性函数,可以增强神经网络的表示能力和学习能力。
常用的激活函数有S型函数和ReLU函数。
常用的 Sigmoid 型函数有 Logistic 函数和 Tanh 函数。
Logistic函数和Tanh函数的代码实现和可视化如下:
# Logistic函数
def logistic(z):
return 1.0 / (1.0 + torch.exp(-z))
# Tanh函数
def tanh(z):
return (torch.exp(z) - torch.exp(-z)) / (torch.exp(z) + torch.exp(-z))
# 在[-10,10]的范围内生成10000个输入值,用于绘制函数曲线
z = torch.linspace(-10, 10, 10000)
plt.figure()
plt.plot(z, logistic(z), color='#e4007f', label="Logistic Function")
plt.plot(z, tanh(z), color='#f19ec2', linestyle ='--', label="Tanh Function")
ax = plt.gca() # 获取轴,默认有4个
# 隐藏两个轴,通过把颜色设置成none
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# 调整坐标轴位置
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='lower right', fontsize='large')
plt.savefig('fw-logistic-tanh.pdf')
plt.show()
在pytorch中使用torch.nn.functional.sigmoid和torch.nn.functional.tanh实现对张量的Logistic和Tanh计算。
out_1 = torch.nn.functional.sigmoid(z)
out_2 = torch.nn.functional.tanh(z)
plt.plot(z, out_1, color='#e4007f', label="Logistic Function_fc")
plt.plot(z, out_2, color='#f19ec2', linestyle ='--', label="Tanh Function_fc")
ax = plt.gca() # 获取轴,默认有4个
# 隐藏两个轴,通过把颜色设置成none
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# 调整坐标轴位置
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='lower right', fontsize='large')
plt.savefig('fc-logistic-tanh.pdf')
plt.show()
常见的ReLU函数有ReLU和带泄露的ReLU(Leaky ReLU)
使用python实现并可视化可视化“ReLU、带泄露的ReLU的函数”
# ReLU
def relu(z):
return torch.maximum(z, torch.tensor(0.))
# 带泄露的ReLU
def leaky_relu(z, negative_slope=0.1):
# 当前版本paddle暂不支持直接将bool类型转成int类型,因此调用了paddle的cast函数来进行显式转换
a1 = (torch.tensor((z > 0), dtype=torch.float32) * z)
a2 = (torch.tensor((z <= 0), dtype=torch.float32) * (negative_slope * z))
return a1 + a2
# 在[-10,10]的范围内生成一系列的输入值,用于绘制relu、leaky_relu的函数曲线
z = torch.linspace(-10, 10, 10000)
plt.figure()
plt.plot(z, relu(z), color="#e4007f", label="ReLU Function")
plt.plot(z, leaky_relu(z), color="#f19ec2", linestyle="--", label="LeakyReLU Function")
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='upper left', fontsize='large')
plt.savefig('fw-relu-leakyrelu.pdf')
plt.show()
运行结果:
在pytorch中使用相应函数torch.nn.functional.relu和torch.nn.functional.leaky_relu并测试。
out_1 = torch.nn.functional.relu(z)
out_2 = torch.nn.functional.leaky_relu(z)
plt.plot(z, out_1, color='#e4007f', label="fc_ReLU Function")
plt.plot(z, out_2, color='#f19ec2', linestyle ='--', label="fc_LeakyReLU Function")
ax = plt.gca() # 获取轴,默认有4个
# 隐藏两个轴,通过把颜色设置成none
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# 调整坐标轴位置
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='upper left', fontsize='large')
plt.savefig('cw-relu-leakyrelu.pdf')
plt.show()
动手实现《神经网络与深度学习》4.1节中提到的其他激活函数:
Hard-Logistic、Hard-Tanh、ELU、Softplus、Swish等。(选做)
使用第3.1.1节中构建的二分类数据集:Moon1000数据集,其中训练集640条、验证集160条、测试集200条。该数据集的数据是从两个带噪音的弯月形状数据分布中采样得到,每个样本包含2个特征。
生成数据的函数见上一篇文章
# 采样1000个样本
n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.5)
num_train = 640
num_dev = 160
num_test = 200
X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]
y_train = y_train.reshape([-1,1])
y_dev = y_dev.reshape([-1,1])
y_test = y_test.reshape([-1,1])
为了更高效的构建前馈神经网络,我们先定义每一层的算子,然后再通过算子组合构建整个前馈神经网络。
权重参数采用默认的随机初始化,偏置采用默认的零初始化。代码实现如下:
# 实现线性层算子
class Linear(Op):
def __init__(self, input_size, output_size, name, weight_init=torch.normal, bias_init=torch.zeros):
"""
输入:
- input_size:输入数据维度
- output_size:输出数据维度
- name:算子名称
- weight_init:权重初始化方式,默认使用'paddle.standard_normal'进行标准正态分布初始化
- bias_init:偏置初始化方式,默认使用全0初始化
"""
self.params = {}
# 初始化权重
self.params['W'] = weight_init(mean=0.,std=1.,size=[input_size,output_size])
# 初始化偏置
self.params['b'] = bias_init([1,output_size])
self.inputs = None
self.name = name
def forward(self, inputs):
"""
输入:
- inputs:shape=[N,input_size], N是样本数量
输出:
- outputs:预测值,shape=[N,output_size]
"""
self.inputs = inputs
outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
return outputs
将Logistic函数实现一个算子,代码实现如下:
class Logistic(Op):
def __init__(self):
self.inputs = None
self.outputs = None
def forward(self, inputs):
"""
输入:
- inputs: shape=[N,D]
输出:
- outputs:shape=[N,D]
"""
outputs = 1.0 / (1.0 + torch.exp(-inputs))
self.outputs = outputs
return outputs
实现一个两层的用于二分类任务的前馈神经网络,选用Logistic作为激活函数,可以利用上面实现的线性层和激活函数算子来组装
# 实现一个两层前馈神经网络
class Model_MLP_L2(Op):
def __init__(self, input_size, hidden_size, output_size):
"""
输入:
- input_size:输入维度
- hidden_size:隐藏层神经元数量
- output_size:输出维度
"""
self.fc1 = Linear(input_size, hidden_size, name="fc1")
self.act_fn1 = Logistic()
self.fc2 = Linear(hidden_size, output_size, name="fc2")
self.act_fn2 = Logistic()
def __call__(self, X):
return self.forward(X)
def forward(self, X):
"""
输入:
- X:shape=[N,input_size], N是样本数量
输出:
- a2:预测值,shape=[N,output_size]
"""
z1 = self.fc1(X)
a1 = self.act_fn1(z1)
z2 = self.fc2(a1)
a2 = self.act_fn2(z2)
return a2
实例化一个两层的前馈网络,令其输入层维度为5,隐藏层维度为10,输出层维度为1。
并随机生成一条长度为5的数据输入两层神经网络,观察输出结果。
# 实例化模型
model = Model_MLP_L2(input_size=5, hidden_size=10, output_size=1)
# 随机生成1条长度为5的数据
X = torch.rand([1, 5])
result = model(X)
print ("result: ", result)
二分类交叉熵损失函数见第三章
神经网络的层数通常比较深,其梯度计算和上一章中的线性分类模型的不同的点在于:
线性模型通常比较简单可以直接计算梯度,而神经网络相当于一个复合函数,需要利用链式法则进行反向传播来计算梯度。
第1步是前向计算,可以利用算子的forward()方法来实现;
第2步是反向计算梯度,可以利用算子的backward()方法来实现;
第3步中的计算参数梯度也放到backward()中实现,更新参数放到另外的优化器中专门进行。
二分类交叉熵损失函数
实现损失函数的backward()
# 实现交叉熵损失函数
class BinaryCrossEntropyLoss(Op):
def __init__(self, model):
self.predicts = None
self.labels = None
self.num = None
self.model = model
def __call__(self, predicts, labels):
return self.forward(predicts, labels)
def forward(self, predicts, labels):
"""
输入:
- predicts:预测值,shape=[N, 1],N为样本数量
- labels:真实标签,shape=[N, 1]
输出:
- 损失值:shape=[1]
"""
self.predicts = predicts
self.labels = labels
self.num = self.predicts.shape[0]
loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts))
+ torch.matmul((1-self.labels.t()), torch.log(1-self.predicts)))
loss = torch.squeeze(loss, 1)
return loss
def backward(self):
# 计算损失函数对模型预测的导数
loss_grad_predicts = -1.0 * (self.labels / self.predicts -
(1 - self.labels) / (1 - self.predicts)) / self.num
# 梯度反向传播
self.model.backward(loss_grad_predicts)
为Logistic算子增加反向函数
class Logistic(Op):
def __init__(self):
self.inputs = None
self.outputs = None
self.params = None
def forward(self, inputs):
outputs = 1.0 / (1.0 + torch.exp(-inputs))
self.outputs = outputs
return outputs
def backward(self, grads):
# 计算Logistic激活函数对输入的导数
outputs_grad_inputs = torch.multiply(self.outputs, (1.0 - self.outputs))
return torch.multiply(grads,outputs_grad_inputs)
线性层输入的梯度
计算线性层参数的梯度
class Linear(Op):
def __init__(self, input_size, output_size, name, weight_init=torch.normal, bias_init=torch.zeros):
"""
输入:
- input_size:输入数据维度
- output_size:输出数据维度
- name:算子名称
- weight_init:权重初始化方式,默认使用'paddle.standard_normal'进行标准正态分布初始化
- bias_init:偏置初始化方式,默认使用全0初始化
"""
self.params = {}
# 初始化权重
self.params['W'] = weight_init(mean=0.,std=1.,size=[input_size,output_size])
# 初始化偏置
self.params['b'] = bias_init([1,output_size])
self.inputs = None
self.name = name
def forward(self, inputs):
self.inputs = inputs
outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
return outputs
def backward(self, grads):
"""
输入:
- grads:损失函数对当前层输出的导数
输出:
- 损失函数对当前层输入的导数
"""
self.grads['W'] = torch.matmul(self.inputs.T, grads)
self.grads['b'] = torch.sum(grads, axis=0)
# 线性层输入的梯度
return torch.matmul(grads, self.params['W'].T)
实现完整的两层神经网络的前向和反向计算
class Model_MLP_L2(Op):
def __init__(self, input_size, hidden_size, output_size):
"""
输入:
- input_size:输入维度
- hidden_size:隐藏层神经元数量
- output_size:输出维度
"""
self.fc1 = Linear(input_size, hidden_size, name="fc1")
self.act_fn1 = Logistic()
self.fc2 = Linear(hidden_size, output_size, name="fc2")
self.act_fn2 = Logistic()
def __call__(self, X):
return self.forward(X)
def forward(self, X):
"""
输入:
- X:shape=[N,input_size], N是样本数量
输出:
- a2:预测值,shape=[N,output_size]
"""
z1 = self.fc1(X)
a1 = self.act_fn1(z1)
z2 = self.fc2(a1)
a2 = self.act_fn2(z2)
return a2
# 反向计算
def backward(self, loss_grad_a2):
loss_grad_z2 = self.act_fn2.backward(loss_grad_a2)
loss_grad_a1 = self.fc2.backward(loss_grad_z2)
loss_grad_z1 = self.act_fn1.backward(loss_grad_a1)
loss_grad_inputs = self.fc1.backward(loss_grad_z1)
在计算好神经网络参数的梯度之后,我们将梯度下降法中参数的更新过程实现在优化器中。
与第3章中实现的梯度下降优化器SimpleBatchGD不同的是,此处的优化器需要遍历每层,对每层的参数分别做更新。
class BatchGD(Optimizer):
def __init__(self, init_lr, model):
super(BatchGD, self).__init__(init_lr=init_lr, model=model)
def step(self):
# 参数更新
for layer in self.model.layers: # 遍历所有层
if isinstance(layer.params, dict):
for key in layer.params.keys():
layer.params[key] = layer.params[key] - self.init_lr * layer.grads[key]
支持自定义算子的梯度计算,在训练过程中调用self.loss_fn.backward()从损失函数开始反向计算梯度;
每层的模型保存和加载,将每一层的参数分别进行保存和加载。
class RunnerV2_1(object):
def __init__(self, model, optimizer, metric, loss_fn, **kwargs):
self.model = model
self.optimizer = optimizer
self.loss_fn = loss_fn
self.metric = metric
# 记录训练过程中的评估指标变化情况
self.train_scores = []
self.dev_scores = []
# 记录训练过程中的评价指标变化情况
self.train_loss = []
self.dev_loss = []
def train(self, train_set, dev_set, **kwargs):
# 传入训练轮数,如果没有传入值则默认为0
num_epochs = kwargs.get("num_epochs", 0)
# 传入log打印频率,如果没有传入值则默认为100
log_epochs = kwargs.get("log_epochs", 100)
# 传入模型保存路径
save_dir = kwargs.get("save_dir", None)
# 记录全局最优指标
best_score = 0
# 进行num_epochs轮训练
for epoch in range(num_epochs):
X, y = train_set
# 获取模型预测
logits = self.model(X)
# 计算交叉熵损失
trn_loss = self.loss_fn(logits, y) # return a tensor
self.train_loss.append(trn_loss.item())
# 计算评估指标
trn_score = self.metric(logits, y).item()
self.train_scores.append(trn_score)
self.loss_fn.backward()
# 参数更新
self.optimizer.step()
dev_score, dev_loss = self.evaluate(dev_set)
# 如果当前指标为最优指标,保存该模型
if dev_score > best_score:
print(f"[Evaluate] best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
best_score = dev_score
if save_dir:
self.save_model(save_dir)
if log_epochs and epoch % log_epochs == 0:
print(f"[Train] epoch: {epoch}/{num_epochs}, loss: {trn_loss.item()}")
def evaluate(self, data_set):
X, y = data_set
# 计算模型输出
logits = self.model(X)
# 计算损失函数
loss = self.loss_fn(logits, y).item()
self.dev_loss.append(loss)
# 计算评估指标
score = self.metric(logits, y).item()
self.dev_scores.append(score)
return score, loss
def predict(self, X):
return self.model(X)
def save_model(self, save_dir):
# 对模型每层参数分别进行保存,保存文件名称与该层名称相同
for layer in self.model.layers: # 遍历所有层
if isinstance(layer.params, dict):
torch.save(layer.params, os.path.join(save_dir, layer.name+".pdparams"))
def load_model(self, model_dir):
# 获取所有层参数名称和保存路径之间的对应关系
model_file_names = os.listdir(model_dir)
name_file_dict = {}
for file_name in model_file_names:
name = file_name.replace(".pdparams", "")
name_file_dict[name] = os.path.join(model_dir, file_name)
# 加载每层参数
for layer in self.model.layers: # 遍历所有层
if isinstance(layer.params, dict):
name = layer.name
file_path = name_file_dict[name]
layer.params = torch.load(file_path)
使用训练集和验证集进行模型训练,共训练2000个epoch。评价指标为accuracy。
epoch_num = 1000
model_saved_dir = 'model'
# 输入层维度为2
input_size = 2
# 隐藏层维度为5
hidden_size = 5
# 输出层维度为1
output_size = 1
# 定义网络
model = Model_MLP_L2(input_size=input_size, hidden_size=hidden_size, output_size=output_size)
# 损失函数
loss_fn = BinaryCrossEntropyLoss(model)
# 优化器
learning_rate = 0.2
optimizer = BatchGD(learning_rate, model)
# 评价方法
metric = accuracy
# 实例化RunnerV2_1类,并传入训练配置
runner = RunnerV2_1(model, optimizer, metric, loss_fn)
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=epoch_num, log_epochs=50, save_dir=model_saved_dir)
# 打印训练集和验证集的损失
plt.figure()
plt.plot(range(epoch_num), runner.train_loss, color="#e4007f", label="Train loss")
plt.plot(range(epoch_num), runner.dev_loss, color="#f19ec2", linestyle='--', label="Dev loss")
plt.xlabel("epoch", fontsize='large')
plt.ylabel("loss", fontsize='large')
plt.legend(fontsize='x-large')
plt.show()
#加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])
使用测试集对训练中的最优模型进行评价,观察模型的评价指标。
# 加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))
import math
# 均匀生成40000个数据点
x1, x2 = torch.meshgrid(torch.linspace(-math.pi, math.pi, 200), torch.linspace(-math.pi, math.pi, 200))
x = torch.stack([torch.flatten(x1), torch.flatten(x2)], axis=1)
# 预测对应类别
y = runner.predict(x)
y = torch.squeeze(torch.as_tensor((y>=0.5),dtype=torch.float32),dim=-1)
# 绘制类别区域
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(x[:,0].tolist(), x[:,1].tolist(), c=y.tolist(), cmap=plt.cm.Spectral)
plt.scatter(X_train[:, 0].tolist(), X_train[:, 1].tolist(), marker='*', c=torch.squeeze(y_train,axis=-1).tolist())
plt.scatter(X_dev[:, 0].tolist(), X_dev[:, 1].tolist(), marker='*', c=torch.squeeze(y_dev,axis=-1).tolist())
plt.scatter(X_test[:, 0].tolist(), X_test[:, 1].tolist(), marker='*', c=torch.squeeze(y_test,axis=-1).tolist())
【思考题】对比
3.1 基于Logistic回归的二分类任务
4.2 基于前馈神经网络的二分类任务
谈谈自己的看法:
Logistic回归典型的二值分类器,用来处理两类分类问题,当然,也可以用来处理多类问题,但要转换为One-vs-All或者是One-vs-One问题,Logistic回归并不能很好的区分开复杂的数据集。
Logistic Regression的结构图示:
和前面的Logistic回归相比,神经网络因为有了激活函数的存在,成了一个非线性分类模型,所以神经网络的分类更复杂。
他们的损失函数都使用了交叉熵损失函数。
因为torch.normal()在加入高斯噪声的时候sigma设置的过于大,这会使得原本弯月数据集样本点过于分散,失去了数据集原本的特征。
所以将noise设置为0:
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0)
运行结果:
将噪声设置为0.1可视化如下:
将噪声设置为0.15可视化如下:
noise=0.1训练前馈神经网络的运行结果:
noise=0.15训练前馈神经网络的运行结果:
本次实验搭建了一个两层的前馈神经网络,搭建的网络比较简单,训练比较简单的数据集效果还是不错的,并且学习了加权求和与仿射变换的区别,总结了一下Logistic回归模型与前馈神经网络的异同。
参考博客:
从Logistic回归到神经网络
NNDL 实验五 前馈神经网络(1)二分类任务