(Opencv C++)数字图像处理--图像灰度变换、图像平滑、图像锐化

我们将从以下三个方面来实现空域增强:

一、图象灰度变换;

二、图象平滑;

、图象锐化;

 

一、图象灰度变换;

(1)、显示直方图;

(2)、对灰度图像进行直方图均衡化;

(3)、对灰度图像进行直方图拉伸;

主要用到的库函数如下:

void calcHist( const Mat* images, int nimages,const int* channels, InputArray mask,OutputArray hist, int dims, const int* histSize,onst float** ranges, bool uniform = true, bool accumulate = false ); //计算直方图函数
void minMaxLoc(InputArray src, CV_OUT double* minVal, CV_OUT double* maxVal = 0, CV_OUT Point* minLoc = 0,CV_OUT Point* maxLoc = 0, InputArray mask = noArray());//得到一个矩阵的最大值,最小值函数
void rectangle(InputOutputArray img, Point pt1, Point pt2,const Scalar& color, int thickness = 1, int lineType = LINE_8, int shift = 0);//统计直方图函数。
void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );//将RGB图像转化为灰度图;

 

首先得到直方图函数如下:

// 得到图像的直方图
MatND getHistogram(Mat &image)
{
	MatND hist;
	int channels[] = { 0 };
	int dims = 1;
	int histSize[] = { 256 };
	float granges[] = { 0, 255 };
	const float *ranges[] = { granges };
	calcHist(&image, 1, channels, Mat(), hist, dims, histSize, ranges);
	return hist;
}

 // 将图像直方图展示出来  
Mat getHistogramImage(Mat &image)
{
	MatND hist = getHistogram(image);
	Mat showImage(256, 256, CV_8U, Scalar(0));
	int i;
	double maxValue = 0;
	minMaxLoc(hist, 0, &maxValue, 0, 0);
	for (i = 0; i < 256; i++)
	{
		float value = hist.at(i);
		int intensity = saturate_cast(256 - 256 * (value / maxValue));
		rectangle(showImage, Point(i, 256 - 1), Point((i + 1) - 1, intensity), Scalar(255));
	}
	return showImage;
}

效果图如下:

  

(Opencv C++)数字图像处理--图像灰度变换、图像平滑、图像锐化_第1张图片

(Opencv C++)数字图像处理--图像灰度变换、图像平滑、图像锐化_第2张图片

直方图均衡化:计算出直方图,遍历直方图,得到归一化直方图和积分图,以积分图为查找表得到均衡化后的图。

其函数如下:

//得到直方图均衡函数
Mat getHistogram_Equalization(Mat &image)
{
	Mat grayImg;
	cvtColor(image, grayImg, CV_RGB2GRAY);//将rgb图像转化为灰度图
	int rowNumber = grayImg.rows;//得到行
	int colNumber = grayImg.cols;//得到列
	int sumNumber = rowNumber * colNumber;//得到图像整个像素个数
	Mat dstImg(rowNumber, colNumber, CV_8UC1, Scalar(0, 0, 0));//初始化直方图均衡化后的图
	double hist[256] = { 0.00 };//直方图
	double dhist[256] = { 0.00 };//直方图归一化图
	double Dhist[256] = { 0.00 };//直方图积分图,每一个像素点
	for (int i = 0; i < rowNumber; i++)//遍历原始图像,得到直方图
	{
		uchar* data = grayImg.ptr(i);
		for (int j = 0; j < colNumber; j++)
		{
			int temp = data[j];//得到图像像素值
			hist[temp] = hist[temp] + 1;//将相应像素值在直方图中加1
		}
	}

	for (int i = 0; i < 256; i++)//遍历直方图,得到归一化直方图和积分图
	{
		dhist[i] = hist[i] / sumNumber;//得到归一化图
		for (int j = 0; j <= i; j++)
		{
			Dhist[i] = Dhist[i] + dhist[j]; //得到积分图
		}
	}


	for (int i = 0; i < rowNumber; i++)//以积分图为查找表得到均衡化后的图
	{
		uchar* data1 = dstImg.ptr(i);
		uchar* data2 = grayImg.ptr(i);
		for (int j = 0; j < colNumber; j++)
		{
			int temp1 = data2[j]; //查找到原始图相应位置的像素值
			int temp2 = (int)(Dhist[temp1] * 255); //在积分图中找到相应像素值的映射值
			data1[j] = temp2;//将映射值赋值给目标图像相应值
		}
	}
	return dstImg;
}
// 使用Rect绘制直方图
void drawHist_Rect(const cv::Mat& hist, cv::Mat& canvas, const cv::Scalar& color)
{
	CV_Assert(!hist.empty() && hist.cols == 1);
	CV_Assert(hist.depth() == CV_32F && hist.channels() == 1);
	CV_Assert(!canvas.empty() && canvas.cols >= hist.rows);

	const int width = canvas.cols;
	const int height = canvas.rows;

	// 获取最大值
	double dMax = 0.0;
	cv::minMaxLoc(hist, nullptr, &dMax);

	// 计算直线的宽度
	float thickness = float(width) / float(hist.rows);

	// 绘制直方图
	for (int i = 1; i < hist.rows; ++i)
	{
		double h = hist.at(i, 0) / dMax * 0.9 * height; // 最高显示为画布的90%
		cv::rectangle(canvas,
			cv::Point(static_cast((i - 1) * thickness), height),
			cv::Point(static_cast(i * thickness), static_cast(height - h)),
			color,
			static_cast(thickness));
	}
}

效果如下:

(Opencv C++)数字图像处理--图像灰度变换、图像平滑、图像锐化_第3张图片

下面进行直方图拉伸:

直方图拉伸的流程如下:

1.计算出直方图;

2.计算出左边界值;

3.计算出右边界值;

4.进行直方图拉伸;

其函数如下:

// 直方图拉伸
// grayImage - 要拉伸的单通道灰度图像
// hist - grayImage的直方图
// minValue - 忽略像数个数小于此值的灰度级
void histStretch(cv::Mat& grayImage, const cv::Mat& hist, int minValue)
{
	CV_Assert(!grayImage.empty() && grayImage.channels() == 1 && grayImage.depth() == CV_8U);
	CV_Assert(!hist.empty() && hist.rows == 256 && hist.cols == 1 && hist.depth() == CV_32F);
	CV_Assert(minValue >= 0);

	// 求左边界
	uchar grayMin = 0;
	for (int i = 0; i < hist.rows; ++i)
	{
		if (hist.at(i, 0) > minValue)
		{
			grayMin = static_cast(i);
			break;
		}
	}

	// 求右边界
	uchar grayMax = 0;
	for (int i = hist.rows - 1; i >= 0; --i)
	{
		if (hist.at(i, 0) > minValue)
		{
			grayMax = static_cast(i);
			break;
		}
	}

	if (grayMin >= grayMax)
	{
		return;
	}

	const int w = grayImage.cols;
	const int h = grayImage.rows;
	for (int y = 0; y < h; ++y)
	{
		uchar* imageData = grayImage.ptr(y);
		for (int x = 0; x < w; ++x)
		{
			if (imageData[x] < grayMin)
			{
				imageData[x] = 0;
			}
			else if (imageData[x] > grayMax)
			{
				imageData[x] = 255;
			}
			else
			{
				imageData[x] = static_cast(std::round((imageData[x] - grayMin) * 255.0 / (grayMax - grayMin)));
			}
		}
	}
}

//直方图拉伸函数
void getHistogram_Stetch(Mat& image)
{
	Mat grayImage;
	cvtColor(image, grayImage, COLOR_BGR2GRAY);
	Mat hist;
	Mat histCanvas(400, 512, CV_8UC3, Scalar(255, 255, 255));
	int channels[1] = { 0 };
	int histSize = 256;
	float range[2] = { 0, 256 };
	const float* ranges[1] = { range };
	calcHist(&grayImage, 1, channels, Mat(), hist, 1, &histSize, ranges);
	drawHist_Rect(hist, histCanvas, Scalar(255, 0, 0));
	// 显示原始灰度图像及其直方图
	imshow("Gray image", grayImage);
	imshow("Gray image's histogram", histCanvas);

	// 直方图拉伸
	cv::Mat grayImageStretched = grayImage.clone();
	histStretch(grayImageStretched, hist, 20);

	// 计算直方图并绘制
	cv::Mat histStretched;
	cv::Mat histCanvasStretched(400, 512, CV_8UC3, cv::Scalar(255, 255, 255));
	cv::calcHist(&grayImageStretched, 1, channels, cv::Mat(), histStretched, 1, &histSize, ranges);
	drawHist_Rect(histStretched, histCanvasStretched, cv::Scalar(255, 0, 0));

	// 显示拉伸后的灰度图像及其直方图
	cv::imshow("Stretched image", grayImageStretched);
	cv::imshow("Stretched image's histogram", histCanvasStretched);
}

其效果图如下:

(Opencv C++)数字图像处理--图像灰度变换、图像平滑、图像锐化_第4张图片

(Opencv C++)数字图像处理--图像灰度变换、图像平滑、图像锐化_第5张图片

 

二、图象平滑;

1、均值滤波;

2、高斯滤波;

3、中值滤波;

主要用到的库函数如下:

CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );//中值滤波
CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT );//高斯滤波
CV_EXPORTS_W void blur( InputArray src, OutputArray dst, Size ksize, Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT );//均值滤波

1.均值滤波

均值滤波:线性平均滤波器,它通过求窗口内所有像素的平均值来得到中心像素点的像素值,就比如下图:

(Opencv C++)数字图像处理--图像灰度变换、图像平滑、图像锐化_第6张图片

均值滤波程序如下:

//盐噪声
void salt_noise(Mat image, int n) 
{

	int i, j;
	for (int k = 0; k < n / 2; k++) {

		// rand() is the random number generator
		i = std::rand() % image.cols; // % 整除取余数运算符,rand=1022,cols=1000,rand%cols=22
		j = std::rand() % image.rows;

		if (image.type() == CV_8UC1) { // gray-level image

			image.at(j, i) = 255; //at方法需要指定Mat变量返回值类型,如uchar等

		}
		else if (image.type() == CV_8UC3) { // color image

			image.at(j, i)[0] = 255; //cv::Vec3b为opencv定义的一个3个值的向量类型
			image.at(j, i)[1] = 255; //[]指定通道,B:0,G:1,R:2
			image.at(j, i)[2] = 255;
		}
	}
}
//椒噪声
void pepper_noise(Mat image, int n) 
{

	int i, j;
	for (int k = 0; k < n; k++) {

		// rand() is the random number generator
		i = std::rand() % image.cols; // % 整除取余数运算符,rand=1022,cols=1000,rand%cols=22
		j = std::rand() % image.rows;

		if (image.type() == CV_8UC1) { // gray-level image

			image.at(j, i) = 0; //at方法需要指定Mat变量返回值类型,如uchar等

		}
		else if (image.type() == CV_8UC3) { // color image

			image.at(j, i)[0] = 0; //cv::Vec3b为opencv定义的一个3个值的向量类型
			image.at(j, i)[1] = 0; //[]指定通道,B:0,G:1,R:2
			image.at(j, i)[2] = 0;
		}
	}
}

//均值滤波
void AverFiltering(const Mat &src, Mat &dst) {
	if (!src.data) return;
	//at访问像素点
	for (int i = 1; i < src.rows; ++i)
		for (int j = 1; j < src.cols; ++j) {
			if ((i - 1 >= 0) && (j - 1) >= 0 && (i + 1) < src.rows && (j + 1) < src.cols) {//边缘不进行处理
				dst.at(i, j)[0] = (src.at(i, j)[0] + src.at(i - 1, j - 1)[0] + src.at(i - 1, j)[0] + src.at(i, j - 1)[0] +
					src.at(i - 1, j + 1)[0] + src.at(i + 1, j - 1)[0] + src.at(i + 1, j + 1)[0] + src.at(i, j + 1)[0] +
					src.at(i + 1, j)[0]) / 9;
				dst.at(i, j)[1] = (src.at(i, j)[1] + src.at(i - 1, j - 1)[1] + src.at(i - 1, j)[1] + src.at(i, j - 1)[1] +
					src.at(i - 1, j + 1)[1] + src.at(i + 1, j - 1)[1] + src.at(i + 1, j + 1)[1] + src.at(i, j + 1)[1] +
					src.at(i + 1, j)[1]) / 9;
				dst.at(i, j)[2] = (src.at(i, j)[2] + src.at(i - 1, j - 1)[2] + src.at(i - 1, j)[2] + src.at(i, j - 1)[2] +
					src.at(i - 1, j + 1)[2] + src.at(i + 1, j - 1)[2] + src.at(i + 1, j + 1)[2] + src.at(i, j + 1)[2] +
					src.at(i + 1, j)[2]) / 9;
			}
			else {//边缘赋值
				dst.at(i, j)[0] = src.at(i, j)[0];
				dst.at(i, j)[1] = src.at(i, j)[1];
				dst.at(i, j)[2] = src.at(i, j)[2];
			}
		}
}

int main()
{
        Mat srcImage = imread("1.jpg");
	namedWindow("【原始图】", 1);
	imshow("【原始图】", srcImage);
	/*********************对图像进行椒盐化并进行均值滤波****************/
	Mat image1(srcImage.size(), srcImage.type());
	Mat image2;
	salt_noise(srcImage, 4000);
	pepper_noise(srcImage, 4000);
	imshow("椒盐图【效果图】", srcImage);
	AverFiltering(srcImage, image1);
	blur(srcImage, image2, Size(3, 3));//openCV库自带的均值滤波函数
	imshow("自定义均值滤波", image1);
	imshow("openCV自带的均值滤波", image2);
}

效果图如下:

(Opencv C++)数字图像处理--图像灰度变换、图像平滑、图像锐化_第7张图片

 

 

 

2.高斯滤波:

对自备图片利用二维高斯模板,对其进行加权平滑滤波,并比较其效果

高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程

程序如下:


//得到高斯噪声
double generateGaussianNoise(double mu, double sigma)
{
	//定义一个特别小的值
	const double epsilon = numeric_limits::min();//返回目标数据类型能表示的最逼近1的正数和1的差的绝对值
	static double z0, z1;
	static bool flag = false;
	flag = !flag;
	//flag为假,构造高斯随机变量
	if (!flag)
		return z1 * sigma + mu;
	double u1, u2;
	//构造随机变量

	do
	{
		u1 = rand()*(1.0 / RAND_MAX);
		u2 = rand()*(1.0 / RAND_MAX);
	} while (u1 <= epsilon);
	//flag为真构造高斯随机变量X
	z0 = sqrt(-2.0*log(u1))*cos(2 * CV_PI * u2);
	z1 = sqrt(-2.0*log(u1))*sin(2 * CV_PI * u2);
	return z1 * sigma + mu;
}
//为图像添加高斯噪声
Mat addGaussianNoise(Mat& srcImage)
{
	Mat resultImage = srcImage.clone();    //深拷贝,克隆
	int channels = resultImage.channels();    //获取图像的通道
	int nRows = resultImage.rows;    //图像的行数

	int nCols = resultImage.cols*channels;   //图像的总列数
	//判断图像的连续性
	if (resultImage.isContinuous())    //判断矩阵是否连续,若连续,我们相当于只需要遍历一个一维数组 
	{
		nCols *= nRows;
		nRows = 1;
	}
	for (int i = 0; i < nRows; i++)
	{
		for (int j = 0; j < nCols; j++)
		{	//添加高斯噪声
			int val = resultImage.ptr(i)[j] + generateGaussianNoise(2, 0.8) * 32;
			if (val < 0)
				val = 0;
			if (val > 255)
				val = 255;
			resultImage.ptr(i)[j] = (uchar)val;
		}
	}
	return resultImage;
}

int main()
{
        Mat srcImage = imread("1.jpg");
        namedWindow("【原始图】", 1);
	imshow("【原始图】", srcImage);
	/*********************对图像添加高斯噪声并进行高斯滤波**************/
	 Mat GaussianshowImage,GaussianshowImage_1;
	 GaussianshowImage_1 = addGaussianNoise(srcImage);
	 imshow("高斯噪声【效果图】", GaussianshowImage_1);
	 GaussianBlur(GaussianshowImage_1, GaussianshowImage, Size(3, 3), 1);
	 imshow("高斯滤波【效果图】", GaussianshowImage);
}

3.中值滤波:

中值滤波:由此我们可以应用到图像处理中。依然我们在图像中去3*3的矩阵,里面有9个像素点,我们将9个像素进行排序,最后将这个矩阵的中心点赋值为这九个像素的中值。

其程序如下:

//求九个数的中值
uchar Median(uchar n1, uchar n2, uchar n3, uchar n4, uchar n5,uchar n6, uchar n7, uchar n8, uchar n9) 
{
	uchar arr[9];
	arr[0] = n1;
	arr[1] = n2;
	arr[2] = n3;
	arr[3] = n4;
	arr[4] = n5;
	arr[5] = n6;
	arr[6] = n7;
	arr[7] = n8;
	arr[8] = n9;
	for (int gap = 9 / 2; gap > 0; gap /= 2)//希尔排序
		for (int i = gap; i < 9; ++i)
			for (int j = i - gap; j >= 0 && arr[j] > arr[j + gap]; j -= gap)
				swap(arr[j], arr[j + gap]);
	return arr[4];//返回中值
}
//中值滤波函数
void MedianFlitering(const Mat &src, Mat &dst) 
{
	if (!src.data)return;
	Mat _dst(src.size(), src.type());
	for (int i = 0; i < src.rows; ++i)
		for (int j = 0; j < src.cols; ++j)
		{
			if ((i - 1) > 0 && (i + 1) < src.rows && (j - 1) > 0 && (j + 1) < src.cols)
			{
				_dst.at(i, j)[0] = Median(src.at(i, j)[0], src.at(i + 1, j + 1)[0],
					src.at(i + 1, j)[0], src.at(i, j + 1)[0], src.at(i + 1, j - 1)[0],
					src.at(i - 1, j + 1)[0], src.at(i - 1, j)[0], src.at(i, j - 1)[0],
					src.at(i - 1, j - 1)[0]);
				_dst.at(i, j)[1] = Median(src.at(i, j)[1], src.at(i + 1, j + 1)[1],
					src.at(i + 1, j)[1], src.at(i, j + 1)[1], src.at(i + 1, j - 1)[1],
					src.at(i - 1, j + 1)[1], src.at(i - 1, j)[1], src.at(i, j - 1)[1],
					src.at(i - 1, j - 1)[1]);
				_dst.at(i, j)[2] = Median(src.at(i, j)[2], src.at(i + 1, j + 1)[2],
					src.at(i + 1, j)[2], src.at(i, j + 1)[2], src.at(i + 1, j - 1)[2],
					src.at(i - 1, j + 1)[2], src.at(i - 1, j)[2], src.at(i, j - 1)[2],
					src.at(i - 1, j - 1)[2]);
			}
			else
				_dst.at(i, j) = src.at(i, j);
		}
	_dst.copyTo(dst);//拷贝
}

int main()
{
        Mat srcImage = imread("1.jpg");
        namedWindow("【原始图】", 1);
	imshow("【原始图】", srcImage);
        /****************对图像加椒盐噪声,并进行中值滤波******************/
    	salt_noise(srcImage, 4000);
	pepper_noise(srcImage, 4000);
	imshow("【噪声图】", srcImage);
	Mat Medical_showImage, Medical_showImage_1;
	MedianFlitering(srcImage, Medical_showImage);
	medianBlur(srcImage, Medical_showImage_1, 3);
	imshow("自定义中值滤波处理后", Medical_showImage);
	imshow("openCV自带的中值滤波", Medical_showImage_1);
}

其效果图如下:

(Opencv C++)数字图像处理--图像灰度变换、图像平滑、图像锐化_第8张图片

、图象锐化;

(1)、Sobel算子;

(2)、Laplacian算子

所用到的库函数:

void Sobel( InputArray src, OutputArray dst, int ddepth,int dx, int dy, int ksize = 3, double scale = 1, double delta = 0,int borderType = BORDER_DEFAULT );//Sobel算子
void Laplacian( InputArray src, OutputArray dst, int ddepth,int ksize = 1, double scale = 1, double delta = 0,int borderType = BORDER_DEFAULT );//Laplacian算子
CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst, double alpha = 1, double beta = 0);
CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, int dtype = -1);

 

(1)、Sobel算子

1,利用3*3的Sobel算子对g11实施图象锐化

  Sobel算子使用两个3*3的矩阵算子使用两个3*3的矩阵(图1)去和原始图片作卷积,分别得到横向G(x)和纵向G(y)的梯度值,如果梯度值大于某一个阈值,则认为该点为边缘点。

//Sobel算子
Mat getSobel(Mat &Image)
{
	Mat dst_x, dst_y, dst;
	Sobel(Image, dst_x, CV_16S,1, 0, 3,1,1,BORDER_DEFAULT);
	convertScaleAbs(dst_x, dst_x);
	imshow("对X方向求导【效果图】", dst_x);

	Sobel(Image, dst_y, CV_16S,0, 1, 3,1,1, BORDER_DEFAULT);
	convertScaleAbs(dst_y, dst_y);
	imshow("对Y方向求导【效果图】", dst_y);
	addWeighted( dst_x, 0.5, dst_y, 0.5, 0, dst);

	return dst;
}


int main()
{
        Mat srcImage_2 = imread("g14.tif");
	namedWindow("【原始图】", 1);
	imshow("【原始图】", srcImage_2);
	/*********************对图像进行Sobel算子***************************/
	Mat showImage, showImage_1;
	showImage=getSobel(srcImage_2);
	imshow("Sobel算子【效果图】", showImage);
}

效果图如下(这里我们直接显示x方向求偏导和对y方向上求的偏导的像素值):

(Opencv C++)数字图像处理--图像灰度变换、图像平滑、图像锐化_第9张图片

(2)、Laplacian算子

利用3*3的Laplacian算子图象锐化:

  Laplace函数实现的方法是先用Sobel 算子计算二阶x和y导数,再求和: 

 

其函数如下:

Mat getLaplacian(Mat &Image)
{
	Mat Scr_Gray,showImage;
	int kernel_size = 3;
	int scale = 1;
	int delta = 0;
	int ddepth = CV_16S;
	// 使用高斯滤波消除噪声
	GaussianBlur(Image, Image, Size(3, 3), 0, 0, BORDER_DEFAULT);

	// 转换为灰度图
	cvtColor(Image, Scr_Gray, CV_RGB2GRAY);

	// 使用Laplace函数
	Mat abs_dst;
	Laplacian(Scr_Gray, showImage, ddepth, kernel_size, scale, delta, BORDER_DEFAULT);
	convertScaleAbs(showImage, abs_dst);
	return abs_dst;
}

int main()
{
        Mat srcImage_2 = imread("g14.tif");
        namedWindow("【原始图】", 1);
	imshow("【原始图】", srcImage_2);
   	/*********************对图像进行Laplacian算子***************************/
	 Mat showImage;
	 showImage = getLaplacian(srcImage_2);
	 imshow("Laplacian【效果图】", showImage);
}

其效果图如下:

(Opencv C++)数字图像处理--图像灰度变换、图像平滑、图像锐化_第10张图片

最后的主函数如下:

int main()
{
	Mat srcImage = imread("1.jpg");
	Mat srcImage_1 = imread("g11.tif");
	Mat srcImage_2 = imread("g14.tif");
	if (!srcImage.data)
	{
		cout << "fail to load the image" << endl;
		return -1;
	}
	if (!srcImage_1.data)
	{
		cout << "fail to load the image_1" << endl;
		return -2;
	}	

	if (!srcImage_2.data)
	{
		cout << "fail to load the image_2" << endl;
		return -3;
	}

	//namedWindow("【原始图】", 1);
	//imshow("【原始图】", srcImage);
  /****************对图像加椒盐噪声,并进行中值滤波******************/
	//salt_noise(srcImage, 4000);
	//pepper_noise(srcImage, 4000);
	//imshow("【噪声图】", srcImage);
	//Mat Medical_showImage, Medical_showImage_1;
	//MedianFlitering(srcImage, Medical_showImage);
	//medianBlur(srcImage, Medical_showImage_1, 3);
	//imshow("自定义中值滤波处理后", Medical_showImage);
	//imshow("openCV自带的中值滤波", Medical_showImage_1);
	/*******************************************************************/

	/*********************对图像添加高斯噪声并进行高斯滤波**************/
	 //Mat GaussianshowImage,GaussianshowImage_1;
	 //GaussianshowImage_1 = addGaussianNoise(srcImage);
	 //imshow("高斯噪声【效果图】", GaussianshowImage_1);
	 //GaussianBlur(GaussianshowImage_1, GaussianshowImage, Size(3, 3), 1);
	 //imshow("高斯滤波【效果图】", GaussianshowImage);
	/*******************************************************************/

	/*********************对图像进行椒盐化并进行均值滤波****************/
	//Mat image1(srcImage.size(), srcImage.type());
	//Mat image2;
	//salt_noise(srcImage, 4000);
	//pepper_noise(srcImage, 4000);
	//imshow("椒盐图【效果图】", srcImage);
	//AverFiltering(srcImage, image1);
	//blur(srcImage, image2, Size(3, 3));//openCV库自带的均值滤波函数
	//imshow("自定义均值滤波", image1);
	//imshow("openCV自带的均值滤波", image2);
	/*******************************************************************/

	/*********************对图像进行Sobel算子***************************/
	//Mat showImage, showImage_1;
	//showImage=getSobel(srcImage_2);
	//imshow("Sobel算子【效果图】", showImage);
	/*******************************************************************/

	/*********************对图像进行Scharr算子***************************/
	//Mat showImage;
	//showImage = getScharr(srcImage_2);
	//imshow("高通滤波【效果图】", showImage);
	/*******************************************************************/

	/*********************对图像进行Laplacian算子***************************/
	/* Mat showImage;
	 showImage = getLaplacian(srcImage_2);
	 imshow("Laplacian【效果图】", showImage);*/
	 /*******************************************************************/


        //Mat showImage = getHistogramImage(srcImage);        //得到相应图片的直方图
	//Mat showImage = getHistogram_Equalization(srcImage);//得到相应图片的直方图的均衡图
	//imshow("【直方图】", showImage);

	//getHistogram_Stetch(srcImage);                     //得到直方图拉伸之后的图像

/**********************测试代码*****************/
	//Mat element = getStructuringElement(MORPH_RECT,Size(15,15));
	//Mat dstImage;
	//erode(srcImage, dstImage, element);
	//imshow("腐蚀操作【效果图】", dstImage);

	//blur(srcImage, dstImage,Size(7,7));
	//imshow("均值滤波【效果图】", dstImage);

	//Mat edge, grayImage;
	//cvtColor(srcImage, grayImage, CV_BGR2GRAY);
	//blur(grayImage, edge, Size(3, 3));
	//Canny(edge, edge, 3, 9, 3);
	//imshow("边缘检测【效果图】", edge);
/**********************************************/
	waitKey(0);
	return 0;
}

需要使用哪个函数自己使用就可以了。

CSDN下载地址

https://download.csdn.net/download/qq_40598185/10881668

完.

 

 

你可能感兴趣的:((Opencv C++)数字图像处理--图像灰度变换、图像平滑、图像锐化)