Dilation空洞卷积
ceil_mode默认是false
# Kyrie Irving
# !/9462...
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from src.nn_conv2d import net
dataset = torchvision.datasets.CIFAR10("../dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)
dataLoader = DataLoader(dataset, batch_size=64)
input = torch.tensor([
[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]
], dtype=torch.float32)
# -1自己torch计算该值 1个通道 5 * 5
input = torch.reshape(input, (-1, 1, 5, 5))
print(input.shape) # torch.Size([1, 1, 5, 5])
class Tudui(nn.Module):
def __init__(self):
super().__init__()
self.maxPool1 = MaxPool2d(kernel_size=3, ceil_mode=True) # Cell
def forward(self, input):
output = self.maxPool1(input)
return output
tudui = Tudui()
output = tudui(input)
print(output) # tensor([[[[2., 3.], [5., 1.]]]])
输出
Files already downloaded and verified
Net(
(conv1): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))
)
Files already downloaded and verified
torch.Size([1, 1, 5, 5])
tensor([[[[2., 3.],
[5., 1.]]]])
写入图片测试
# Kyrie Irving
# !/9462...
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("../dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)
dataLoader = DataLoader(dataset, batch_size=64)
# input = torch.tensor([
# [1, 2, 0, 3, 1],
# [0, 1, 2, 3, 1],
# [1, 2, 1, 0, 0],
# [5, 2, 3, 1, 1],
# [2, 1, 0, 1, 1]
# ], dtype=torch.float32)
# # -1自己torch计算该值 1个通道 5 * 5
# input = torch.reshape(input, (-1, 1, 5, 5))
# print(input.shape) # torch.Size([1, 1, 5, 5])
class Tudui(nn.Module):
def __init__(self):
super().__init__()
self.maxPool1 = MaxPool2d(kernel_size=3, ceil_mode=True) # Cell
def forward(self, input):
output = self.maxPool1(input)
return output
tudui = Tudui()
# output = tudui(input)
# print(output) # tensor([[[[2., 3.], [5., 1.]]]])
writer = SummaryWriter("../logs")
step = 0
for data in dataLoader:
imgs, targets = data
writer.add_images("input", imgs, step)
# (-1, 3, 30, 30) batch-size不知道多少时候弄成-1 会根据后边的值进行计算 通道改为3 不然会报错
output = tudui(imgs)
writer.add_images("output", output, step)
step = step + 1
writer.close()
(pytorch) E:\CodeCodeCodeCode\AI\Pytorch-study>tensorboard --logdir="logs/"
TensorFlow installation not found - running with reduced feature set.
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.7.0 at http://localhost:6006/ (Press CTRL+C to quit)
输出
# Kyrie Irving
# !/9462...
import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from src.nn_conv2d import dataLoader
input = torch.tensor([
[1, -0.5],
[-1, 3]
])
input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape) # torch.Size([1, 1, 2, 2])
class Tudui(nn.Module):
def __init__(self):
super().__init__()
self.relu1 = ReLU() # 大于0使用input, 小于0用0
self.sigmoid1 = Sigmoid()
def forward(self, input):
output = self.relu1(input)
return output
tudui = Tudui()
output = tudui(input)
print(output) # tensor([[[[1., 0.], [0., 3.]]]])
dataset = torchvision.datasets.CIFAR10("../dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)
dataLoader = DataLoader(dataset, batch_size=64)
writer = SummaryWriter("../logs")
step = 0
for data in dataLoader:
imgs, targets = data
writer.add_images("input", imgs, global_step=step)
output = tudui(imgs)
writer.add_images("output", output, step)
step += 1
writer.close()
输出
Files already downloaded and verified
Net(
(conv1): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))
)
torch.Size([1, 1, 2, 2])
tensor([[[[1., 0.],
[0., 3.]]]])
Files already downloaded and verified
全部代码
# Kyrie Irving
# !/9462...
import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# 每张图片都转为ToTensor类型
dataset_transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
])
test_set = torchvision.datasets.CIFAR10(root="../dataset", train=False, transform=dataset_transform, download=True)
test_loader = DataLoader(dataset=test_set, batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = Linear(196608, 10)
def forward(self, input):
output = self.linear1(input)
return output
tudui = Tudui()
for data in test_loader:
imgs, targets = data
# output = torch.reshape(imgs, (1, 1, 1, -1))
output = torch.flatten(imgs)
print(output.shape)
output = tudui(output)
print(output.shape)