无约束最优化方法-牛顿法


无约束最优化算法-Newton法原理及c++编程实现
6536人阅读 评论(5) 收藏 举报
本文章已收录于:
分类:
【算法】(27)
作者同类文章 X

    无约束最优化方法-牛顿法

    牛顿法Newton'smethod)又称为牛顿-拉弗森方法Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法,迭代的示意图如下:


    总结@郑海波 blog.csdn.net/nuptboyzhb/

    参考:斯坦福大学machine learning

    本博客中所有源代码:http://download.csdn.net/detail/nuptboyzhb/4886786

    求解问题:

    1.无约束函数f的0点。

    2.无约束函数f的最小值,最大值。



    函数的曲线(matlab画出)



    #include

    #include

    using namespace std;

    #define f(x)  (pow(x,3)-4.0*pow(x,2)+3.0*x)

    #define  df(x)    (3.0*pow(x,2)-8.0*x+3)

    int main()

    {

           doublex=9;//设置迭代的初始值

           doubleerr=1.0e-10;//设置精度

           intcount=0;

        while(true)

        {

                  x=x-f(x)/df(x);

                  if(abs(f(x))

                  {

                         break;

                  }

                  cout<<""<迭代x="<    }

           cout<<"函数f0点为:"<

           return0;

    }

    结果讨论:

    迭代结果与初始值有关,迭代的结果总是初始值x附近的0。如:

    1.初始值x=9时,运行结果如下:

    0迭代 x=6.51724 f(x)=126.47

    1迭代 x=4.90174 f(x)=36.3714

    2迭代 x=3.88768 f(x)=9.96551

    3迭代 x=3.30967 f(x)=2.36715

    函数f0点为:3.05742

    Press any key tocontinue

    2.初始值x=1.3时,运行结果如下:

    函数f0点为:1.01545

    Press any key tocontinue

    3.初始值为-10时,运行结果如下:

    0迭代 x=-6.26632 f(x)=-421.924

    1迭代 x=-3.79793 f(x)=-123.873

    2迭代 x=-2.18197 f(x)=-35.9783

    3迭代 x=-1.14629 f(x)=-10.201

    4迭代 x=-0.51317 f(x)=-2.72803

    函数f0点为:-0.167649

    Press any key tocontinue


    [cpp] view plain copy print ?
    1. #include   
    2. #include   
    3. using namespace std;  
    4. #define  f(x)   (pow(x,3)-4.0*pow(x,2)+3.0*x)  
    5. #define df(x)    (3.0*pow(x,2)-8.0*x+3)  
    6. #define ddf(x)    (6.0*x-8)  
    7. int main()  
    8. {  
    9.     double x=1.2;//初始值  
    10.     double err=1.0e-10;  
    11.     int count=0;  
    12.     while (true)  
    13.     {  
    14.         x=x-df(x)/ddf(x);  
    15.         if (abs(df(x))
    16.         {  
    17.             break;  
    18.         }  
    19.         cout<<"第"<"迭代x="<" df(x)="<
    20.     }  
    21.     cout<<"函数f极点为:("<","<")"<
    22.     return 0;  
    23. }  
    #include 
    #include 
    using namespace std;
    #define  f(x)   (pow(x,3)-4.0*pow(x,2)+3.0*x)
    #define df(x)    (3.0*pow(x,2)-8.0*x+3)
    #define ddf(x)    (6.0*x-8)
    int main()
    {
    	double x=1.2;//初始值
    	double err=1.0e-10;
    	int count=0;
        while (true)
        {
    		x=x-df(x)/ddf(x);
    		if (abs(df(x))


    结果讨论:

    迭代结果与初始值有关,迭代的结果总是初始值x附近的极值。如:

    1.初始值x=9时,运行结果如下:

    0迭代x=5.21739df(x)=42.9244

    1迭代x=3.37549df(x)=10.1778

    2迭代x=2.54484df(x)=2.06992

    函数f极点为:(2.26008,-2.1072)

    Press any key tocontinue

    2.初始值x=1.2时,运行结果如下:

    0迭代x=-1.65df(x)=24.3675

    1迭代x=-0.288687df(x)=5.55952

    函数f极点为:(0.282567,0.550886)

    Press any key tocontinue

    3.初始值为-10时,运行结果如下:

    0迭代x=-4.36765df(x)=95.1702

    1迭代x=-1.58537df(x)=23.2232

    2迭代x=-0.259259df(x)=5.27572

    函数f极点为:(0.292851,0.560622)

    Press any key tocontinue

    注意:对于只有1个0点的函数求解或只有一个极值的函数求解时,迭代结果一般与初始值的关系不大,但迭代次数会受影响。

    转载请声明,未经允许,不得用以商业目的


    你可能感兴趣的:(无约束最优化方法-牛顿法)