图像分类数据集
import torch
import torchvision
from matplotlib import pyplot as plt
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
def get_fashion_mnist_labels(labels):
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankel boot']
return [text_labels[int(i)] for i in labels]
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
ax.imshow(img.numpy())
else:
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
"""
d2l.use_svg_display() # 使用svg显示图片,清晰度更高
# 读取数据集
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(root="dataset/FashionMNIST",
train=True, transform=trans,
download=True)
mnist_test = torchvision.datasets.FashionMNIST(root="dataset/FashionMNIST",
train=False, transform=trans,
download=True)
X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y))
plt.show()
"""
def get_dataloader_workers():
return 4
def load_data_fashion_mnist(batch_size, resize = None):
trans = [transforms.ToTensor()]
if resize:
trans.insert(0,transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root="dataset/FashionMNIST",
train=True, transform=trans,
download=False)
mnist_test = torchvision.datasets.FashionMNIST(root="dataset/FashionMNIST",
train=False, transform=trans,
download=False)
return (data.DataLoader(mnist_train,batch_size,shuffle=True,
num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=True,
num_workers=get_dataloader_workers()))
softmax回归的从零开始实现
import torch
from IPython import display
from d2l import torch as d2l
from matplotlib import pyplot as plt
btach_size = 256
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size=btach_size)
num_inputs = 784
num_outputs = 10
W = torch.normal(0,0.01, size=(num_inputs,num_outputs),requires_grad=True)
b = torch.zeros(num_outputs,requires_grad=True)
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1,keepdim = True)
return X_exp / partition
def net(X):
return softmax(torch.matmul(X.reshape((-1,W.shape[0])),W)+b)
def cross_entropy(y_hat,y):
return -torch.log(y_hat[range(len(y_hat)),y])
def accuracy(y_hat,y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis = 1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
class Accumulator:
def __init__(self,n):
self.data = [0.0] * n
def add(self,*args):
self.data = [ a + float(b) for a,b in zip(self.data,args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def evaluate_accuracy(net,data_iter):
if isinstance(net,torch.nn.Module):
net.eval()
metric = Accumulator(2)
with torch.no_grad():
for X,y in data_iter:
metric.add(accuracy(net(X),y),y.numel())
return metric[0] / metric[1]
def train_epoch_ch3(net,train_iter,loss,updater):
if isinstance(net,torch.nn.Module):
net.train()
metric = Accumulator(3)
for X,y in train_iter:
y_hat = net(X)
l = loss(y_hat,y)
if isinstance(updater,torch.optim.Optimizer):
updater.zero_grad()
l.mean().backward()
updater.step()
else:
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()),accuracy(y_hat,y),y.numel())
return metric[0]/metric[2],metric[1]/metric[2]
class Animator:
def __init__(self,xlabel=None, ylabel = None, legend=None, xlim = None,ylim=None,xscale='linear',
yscale='linear',fmts=('-','m--','g-','r:'),nrows=1,ncols=1, figsize=(3.5,2.5)):
if legend is None:
legend=[]
d2l.use_svg_display()
self.fig,self.axes = d2l.plt.subplots(nrows,ncols,figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes,]
self.config_axes = lambda : d2l.set_axes(self.axes[0],xlabel,ylabel,xlim,ylim,xscale,yscale,legend)
self.X,self.Y,self.fmts = None,None,fmts
def add(self,x,y):
if not hasattr(y,"__len__"):
y = [y]
n = len(y)
if not hasattr(x,"__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i,(a,b) in enumerate(zip(x,y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x,y,fmt in zip(self.X,self.Y,self.fmts):
self.axes[0].plot(x,y,fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)
def train_ch3(net,train_iter, test_iter, loss, num_epochs, updater):
animator = Animator(xlabel='epoch',xlim=[1,num_epochs],ylim = [0.3,0.9],
legend=['train loss','train acc','test acc'])
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net,train_iter,loss,updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch+1, train_metrics+(test_acc,))
train_loss, train_acc = train_metrics
assert train_loss < 0.5, train_loss
assert train_acc <=1 and train_acc > 0.7, train_acc
assert test_acc <=1 and test_acc > 0.7, test_acc
lr = 0.1
def updater(batch_size):
return d2l.sgd([W,b],lr,batch_size)
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
plt.show()
def predict_ch3(net,test_iter, n=6):
for X,y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true + '\n' + pred for true,pred in zip(trues,preds)]
d2l.show_images(X[0:n].reshape((n,28,28)),1,n,titles = titles[0:n])
plt.show()
predict_ch3(net,test_iter)
softmax回归的简洁实现
import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
def init_weight(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weight)
loss = nn.CrossEntropyLoss(reduction='none')
optimer = torch.optim.SGD(net.parameters(),lr = 0.01)
num_epoch = 10
d2l.train_ch3(net,train_iter,test_iter, loss, num_epoch, optimer)