- OpenLSD是一个自适应开源数据集,旨在支持逻辑综合中的多种机器学习任务。
数据集
2024-11-14,由中国科学院计算技术研究所、鹏城实验室和北京大学等联合创建OpenLSD数据集,目的为逻辑综合过程中的机器学习任务提供一个自适应的数据集生成框架。该数据集的核心研究问题是如何在逻辑综合的三个基本步骤——布尔表示、逻辑优化和技术映射中,通过机器学习方法提升效率和质量。一、研究背景:逻辑综合是电子设计自动化(EDA)流程中的关键环节,它负责将高级设计规范转化为门级网络列表。近年来
- 大模型学习方法之——大模型技术学习路线
hhaiming_
学习方法学习语言模型人工智能
“技术学习无非涵盖三个方面,理论,实践和应用**”**大模型技术爆火至今已经有两年的时间了,而且大模型技术的发展潜力也不言而喻。因此,很多人打算学习大模型,但又不知道该怎么入手,因此今天就来了解一下大模型的学习路线。丁元英说:“透视社会有三个层面,技术,制度与文化”;同样的,技术学习同样有三个层面,理论,实践和应用,三者相辅相成,缺一不可。技术的意义在于解决问题01—大模型技术学习的理论,实践
- PyTorch 深度学习实战(12):Actor-Critic 算法与策略优化
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了强化学习的基本概念,并使用深度Q网络(DQN)解决了CartPole问题。本文将深入探讨Actor-Critic算法,这是一种结合了策略梯度(PolicyGradient)和值函数(ValueFunction)的强化学习方法。我们将使用PyTorch实现Actor-Critic算法,并应用于经典的CartPole问题。一、Actor-Critic算法基础Actor-Cri
- Blender学习方法与技巧
自动化专业爱好者
网络
以下是针对Blender零基础用户的学习教程推荐与高效学习方法总结,结合了多个优质资源整理而成,帮助快速入门:一、Blender学习方法与技巧制定学习计划与目标明确短期目标(如掌握基础操作)和长期目标(如独立完成场景建模),建议每天投入2-3小时系统学习。初期以熟悉界面、快捷键和基础工具为主,逐步过渡到建模、材质和渲染的综合应用。高效利用教程资源视频教程优先:视觉化学习更直观,推荐B站、YouTu
- 深度探索 Java 代码审计:筑牢安全防线的关键之路
阿贾克斯的黎明
javajava安全开发语言
在当今高度数字化的时代,软件安全成为了至关重要的议题。对于众多使用Java语言进行开发的程序员而言,深入掌握Java代码审计技能,无疑是守护软件安全的核心手段。本文将围绕一本涵盖Java代码审计丰富知识的书籍目录,全面剖析Java代码审计的各个关键环节以及其在CTFAWD比赛中的重要应用。一、学习经验:开启Java代码审计的智慧之门Java代码审计之路并非坦途,需要有系统的学习方法和实践经验。书籍
- Python精进系列: K-Means 聚类算法调用库函数和手动实现对比分析
进一步有进一步的欢喜
Python精进系列算法pythonkmeans
一、引言在机器学习领域,聚类分析是一种重要的无监督学习方法,用于将数据集中的样本划分为不同的组或簇,使得同一簇内的样本具有较高的相似性,而不同簇之间的样本具有较大的差异性。K-Means聚类算法是最常用的聚类算法之一,它以其简单性和高效性在数据挖掘、图像分割、模式识别等领域得到了广泛应用。本文将详细介绍K-Means聚类算法,并分别给出调用现成函数和不调用任何现成函数实现K-Means聚类的代码示
- AI笔记——语音识别
Yuki-^_^
人工智能AI人工智能笔记语音识别
摘要:语音识别(AutomaticSpeechRecognition,ASR)是人工智能领域的一项重要技术,它将人类的语音信号转换成文字。随着科技的发展,语音识别已经成为现代生活和工作中不可或缺的一部分。本文旨在介绍语音识别的基本原理、关键技术、应用场景以及未来发展趋势。一、历史与发展语音识别技术的历史可以追溯到20世纪50年代,那时的技术基于规则和模板。随着计算能力的提升和深度学习方法的出现,语
- 数据挖掘技术介绍
柒柒钏
数据挖掘数据挖掘人工智能
数据挖掘技术介绍分类聚类关联规则挖掘预测异常检测特征选择与降维文本挖掘序列模式挖掘深度学习集成学习数据挖掘(DataMining)是一种从大量数据中提取有用信息和模式的技术,旨在从数据中发现隐藏的规律、趋势或关系,从而为决策提供支持。分类定义:是一种监督学习方法,用于将数据分为不同的类别。功能:根据已标记的训练数据,学习一个模型,用于预测新数据的类别。方法:决策树、支持向量机、神经网络、逻辑回归、
- Deepseek:物理神经网络PINN入门教程
天一生水water
神经网络人工智能深度学习
一、物理信息网络(PINN)的概念与原理1.定义与来源物理信息网络(Physics-InformedNeuralNetworks,PINN)是一种将物理定律(如偏微分方程、守恒定律等)嵌入神经网络训练过程的深度学习方法。其核心思想是通过神经网络同时拟合观测数据并满足物理约束,从而解决传统数值方法难以处理的高维、噪声数据或复杂边界条件问题。来源:PINN起源于对传统数值方法局限性的改进需求(如网格生
- 手写机器学习算法系列——K-Means聚类算法(一)
木有鱼丸223
手写机器学习算法系列机器学习算法聚类
代码仓库(数字空间项目,GN可上)不想看的话,我也将代码上传到本博客中。1.聚类算法简介在数据科学和机器学习领域,聚类(Clustering)算法是一种无监督学习方法,它将相似的对象分到同一个组,而不同的对象则被分到不同的组。这种算法的主要目标是根据数据的特征进行分组,以此找出数据的内在结构。聚类算法的一个核心特点就是它并不需要预先知道数据的类别,而是通过算法自动进行分组。在实际应用中,我们常见的
- 【大模型学习】第十九章 什么是迁移学习
好多渔鱼好多
AI大模型人工智能大模型AI机器学习迁移学习
目录1.迁移学习的起源背景1.1传统机器学习的问题1.2迁移学习的提出背景2.什么是迁移学习2.1迁移学习的定义2.2生活实例解释3.技术要点与原理3.1迁移学习方法分类3.1.1基于特征的迁移学习(Feature-basedTransfer)案例说明代码示例3.1.2基于模型的迁移(Model-basedTransfer)案例说明BERT用于情感分析的例子3.1.3基于实例的迁移(Instanc
- Linux之bash常用命令
Ssaty.
linuxbashunix
第1关:linux之bash常用命令基本知识任务描述本关任务:根据基本知识点,回答一些选择题。相关知识为了完成本关任务,你需要掌握:1.Linux简单介绍2.Linux的优缺点3.操作系统介绍4.UNIX操作系统5.MINIX操作系统6.GNU计划7.POSIX标准8.程序学习方法9.为什么学习Linux10.Linux发展历史Linux简单介绍Linux核心理念:万物皆文件。Linux:是一个内
- 一文读懂强化学习:从基础到应用
LHTZ
算法时序数据库大数据数据库架构动态规划
强化学习是什么强化学习是人工智能领域的一种学习方法,简单来说,就是让一个智能体(比如机器人、电脑程序)在一个环境里不断尝试各种行为。每次行为后,环境会给智能体一个奖励或者惩罚信号,智能体根据这个信号来调整自己的行为,目的是让自己在未来能获得更多奖励。就像训练小狗,小狗做对了动作(比如坐下),就给它零食(奖励),做错了就没有零食(惩罚),慢慢地小狗就知道怎么做能得到更多零食,也就是学会了最优行为。强
- QwQ-32B企业级本地部署:结合XInference与Open-WebUI使用
大势下的牛马
搭建本地gptRAG知识库人工智能QwQ-32B
QwQ-32B是阿里巴巴Qwen团队推出的一款推理模型,拥有320亿参数,基于Transformer架构,采用大规模强化学习方法训练而成。它在数学推理、编程等复杂问题解决任务上表现出色,性能可媲美拥有6710亿参数的DeepSeek-R1。QwQ-32B在多个基准测试中表现出色,例如在AIME24基准上,其数学问题解决能力得分达到79.5,超过OpenAI的o1-mini。它在LiveBench、
- 深度学习核心技术深度解析
月落星还在
深度学习深度学习人工智能
一、深度学习的本质与核心思想定义:通过多层非线性变换,自动学习数据层次化表征的机器学习方法核心突破:表征学习:自动发现数据的内在规律,无需人工设计特征端到端学习:直接从原始输入到最终输出,消除中间环节的信息损失分布式表示:通过神经元激活模式的组合,指数级提升表达能力数学本质:f(x)=WLσ(WL−1σ(...σ(W1x+b1)...)+bL−1)+bLf(x)=W_{L}σ(W_{L-1}σ(.
- 深度学习/机器学习入门基础数学知识整理(一):线性代数基础,矩阵,范数等
chljerry_mouse
线性代数深度学习机器学习
前面大概有2年时间,利用业余时间断断续续写了一个机器学习方法系列,和深度学习方法系列,还有一个三十分钟理解系列(一些趣味知识);新的一年开始了,今年给自己定的学习目标——以补齐基础理论为重点,研究一些基础课题;同时逐步继续写上述三个系列的文章。最近越来越多的研究工作聚焦研究多层神经网络的原理,本质,我相信深度学习并不是无法掌控的“炼金术”,而是真真实实有理论保证的理论体系;本篇打算摘录整理一些最最
- KMeans实战——聚类和轮廓系数评估啤酒数据集
巷955
机器学习人工智能
原理:在数据分析和机器学习中,聚类是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本相似度较高,而不同簇之间的样本相似度较低。KMeans算法是其中最常用的聚类算法之一。本文将介绍如何使用KMeans算法对啤酒数据集进行聚类,并使用轮廓系数(SilhouetteScore)来评估聚类结果的质量。1.数据准备首先,我们需要导入必要的库并加载数据集。本文使用的数据集是一
- 情感识别(Emotion Recognition)
路野yue
人工智能自然语言处理
情感识别(EmotionRecognition)是通过分析人类的多模态数据(如面部表情、语音、文本等)来识别和理解其情感状态的技术。它在人机交互、心理健康、市场分析等领域有广泛应用。情感识别的主要方法1.基于面部表情的情感识别方法:通过分析面部特征(如眼睛、嘴巴、眉毛等)来识别情感。技术:传统方法:使用特征提取(如Gabor滤波器、LBP)和分类器(如SVM)。深度学习方法:使用卷积神经网络(CN
- cornell grasp data 康奈尔大学抓取数据集 百度云
工科pai
深度学习自主抓取康奈尔抓取数据集自主抓取
国内下载较慢,康奈尔大学抓取数据集分享,给有用的人。科研之路道阻且长,互行方便。康奈尔大学抓取数据集是基于深度学习方法实现机器人自主抓取的必备数据集,直接推动了机器人自主抓取的发展。目前先进的基于视觉和机器人抓取方法都是在该数据集上训练过。该数据集共十组,每组100个物体,共计1000个物体,不仅包含物体的图像,还包含物体的抓取位姿。下载链接:链接:https://pan.baidu.com/s/
- 基于PyTorch的深度学习——机器学习1
Wis4e
深度学习机器学习pytorch
监督学习是最常见的一种机器学习类型,其任务的特点就是给定学习目标,这个学习目标又称标签、标注或实际值等,整个学习过程就是围绕如何使预测与目标更接近而来的。近些年,随着深度学习的发展,分类除传统的二分类、多分类、多标签分类之外,也出现了一些新内容,如目标检测、目标识别、图像分割等监督学习的重要内容半监督学习是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,同时由部分使用标记
- 点云语义分割:PointNet++在S3DIS数据集上的训练
完美代码
3dneo4j点云
点云语义分割:PointNet++在S3DIS数据集上的训练点云语义分割是计算机视觉领域的一个重要任务,旨在将点云数据中的每个点分配给其对应的语义类别。PointNet++是一种流行的深度学习方法,可用于处理点云数据,并在各种任务中取得了良好的性能。在本文中,我们将探讨如何使用PointNet++模型在S3DIS数据集上进行训练,并提供相应的源代码。数据集介绍S3DIS数据集是一个常用的用于室内场
- 你好,我是冴羽,我写了一套《前端大佬成长之路》
你好,我是冴羽。这么正式的开头说明我有了一个大动作。是的,我创建了自己的知识星球:“冴羽·前端大佬成长之路”。重点一:新的一年,我会在知识星球更新一套“前端大佬成长之路”的课程。包含目标规划篇、学习方法篇、前端学习篇、个人管理篇、职场发展篇、面试技巧篇、健康养生篇共7大篇章、40节文章。总结了我近十年的工作生活经验,让大家少走一些弯路,节省一些时间。重点二:但是帮助你全面成长,一套课程是不够的,必
- 深度学习在SSVEP信号分类中的应用分析
自由的晚风
深度学习分类人工智能
目录前言1.SSVEP信号分类的处理流程2.模型输入和数据预处理3.模型结构设计3.1卷积神经网络(CNN)3.2长短期记忆网络(LSTM)4.训练方法与激活函数5.性能评估与挑战6.未来方向前言随着脑机接口(BCI)技术的发展,SSVEP(稳态视觉诱发电位)因其高信息传输速率和短训练时间而成为最受欢迎的BCI范式之一。近年来,深度学习方法在SSVEP信号分类中取得了显著的成果。本文通过对31个深
- 支持向量机 SVM 简要介绍
_夜空的繁星_
机器学习svm支持向量机拉格朗日对偶机器学习
那些我从来没有理解过的概念(1)下面是我在学习过程中遇到的对我很难理解的概念和我抄下来的笔记主要资料来源:《统计学习方法》,维基百科拉格朗日对偶问题是什么假设f(x),ci(x),hj(x)是定义在Rn上的连续可微函数,考虑以下最优化问题:$$\min_{x\inR^n}{f(x)}\c_i(x)\leq0,i=1,2,\dots,k\h_j(x)=0,j=1,2,\dots,l$$是一个凸优化问
- 2024年最新PyTorch深度学习项目实战100例数据集_python 深度学习项目演练
2401_84585440
程序员深度学习pythonpytorch
前言最近很多订阅了《PyTorch深度学习项目实战100例》的用户私信咨询有些数据集下载不了以及一些文章中没有给出数据集链接,为了解决这个问题,专门开设了本篇文章,提供数据集下载链接,打包100例的所有数据集。本专栏适用人群:深度学习初学者,刚刚接触PyTorch的用户群体,专栏将具体讲解如何快速搭建深度学习模型用自己的数据集实现深度学习小项目,快速让新手小白能够对基于深度学习方法有个基本的框架认
- 大规模语言模型构建流程
人工智能技术笔记
语言模型人工智能自然语言处理
大规模语言模型1.大语言模型大规模语言模型(LargeLanguageModels,LLM),也称大语言模型,是一种由包含数百亿以上参数的深度神经网络构建的语言模型,通常使用自监督学习方法通过大量无标注文本进行训练。2.预训练语言模型受到计算机视觉领域采用ImageNet对模型进行一次预训练,使得模型可以通过海量图像充分学习如何提取特征,然后再根据任务目标进行模型精调的预训练范式影响,自然语言处理
- 【自然语言处理-NLP】情感分析与主题建模
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习自然语言处理人工智能情感分析主题建模深度学习机器学习NLP
以下内容详细剖析了NLP中情感分析(SentimentAnalysis)和主题建模(TopicModeling)的技术与方法,分别展示如何从文本中提取情感倾向和潜在主题,并提供示例代码和讲解,可在Python环境下直接运行。目录情感分析(SentimentAnalysis)1.1概念与方法概览1.2传统机器学习方法1.3深度学习与预训练模型1.4代码示例:基于机器学习的情感分类主题建模(Topic
- 2020年精排模型调研
Marcus-Bao
机器不学习人工智能机器学习大数据算法
❝本文经作者同意转载自:https://zhuanlan.zhihu.com/p/335781101作者:Ruhjkg编辑:MarcusBao谢绝任何形式的二次转载!❞2020年精排模型调研前言最近由于工作需要调研了一下2020年关于精排模型的进展。在广告推荐领域的CTR预估问题上,早期以LR+人工特征工程为主的机器学习方法,但由于人工组合特征工程成本较高,不同任务难以复用。后面FM因子分解机提出
- Verilog学习方法—基础入门篇(一)
博览鸿蒙
FPGAfpga开发
前言:在FPGA开发中,VerilogHDL(硬件描述语言)是工程师必须掌握的一项基础技能。它不仅用于描述数字电路,还广泛应用于FPGA的逻辑设计与验证。对于初学者来说,掌握Verilog的核心概念和基本语法,是深入FPGA开发的第一步。本篇文章将从Verilog基础入门的角度,帮助你快速建立学习框架,逐步掌握Verilog的使用方法。1.了解Verilog的基本概念1.1什么是Verilog?V
- cv君独家视角 | AI内幕系列十四:【手机、相机防抖大揭秘】数字防抖、鸡头防抖、光学防抖、AI防抖等(附源码+长期更新)
cv君
原创项目级实战项目cv君独家视角AI内幕系列深度学习与计算机视觉精品人工智能aiisp科技python
目录摘要主要防抖技术手机防抖对比某拇指相机技术分析:1.基础介绍2.功能需求2.1功能背景2.2技术背景与技术选型2.3技术方案2.4可行性落地链路2.5竞品调研与市场分析2.6防抖主客观评价源码实现运动防抖步骤:代码实现性能优化与改进代码改进进一步改进与应用深度学习方法示例实时处理与应用示例运动摄影无人机航拍摄像头防抖设备计算资源需求复杂场景处理参数调整和优化实时处理需求误差累积并行和分布式处理
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro