KDD2021
1.Reinforced Anchor Knowledge Graph Generation for News Recommendation Reasoning
Author(Institute): Jianxun Lian
KeyWords: news recommender; knowledge graph; recommendation reasoning
Dataset: MIND; Bing News
2.Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in Recommender System
Author(Institute): Jinfeng Yi
KeyWords: Recommendation; Popularity Bias; Causal Reasoning
Dataset: ML10M; Adressa; Globo; Gowalla; Yelp
3.Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising
Author(Institute): Dongbo Xi
KeyWords: Sequential Dependence; Multi-step Conversions; Multi-task Learning; Targeted Display Advertising
Dataset: Meituan; Co-Branded Credit Cards; Ali-CCP
4.Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertising
Author(Institute): Yudan Liu
KeyWords: Look-alike; Audience Expansion; Meta Learning; Campaign
Dataset: Tencent; WeChat
5.Adversarial Feature Translation for Multi-domain Recommendation
Author(Institute): Xiaobo Hao
KeyWords: recommender system; multi-domain recommendation; GAN
Dataset: Netflix; MDR-5B
6.Debiasing Learning based Cross-domain Recommendation
Author(Institute): Yuxiao Dong
KeyWords: Debias
7.MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems
Author(Institute): Yuxiao Dong
KeyWords: Collaborative Filtering; Recommender Systems; Graph Neural Networks; Negative Samplin
Dataset: Alibaba; Yelp2018; Amazon
8.Multi-view Denoising Graph Auto-Encoders on Heterogeneous Information Networks for Cold-start Recommendation
Author(Institute): Hao Gu
KeyWords: Cold-start; Auto-Encoders; Denoise
Dataset: WeChat
9.Reinforced Anchor Knowledge Graph Generation for News Recommendation Reasoning
Author(Institute): Jianxun Lian
KeyWords: news recommender; knowledge graph; recommendation reasoning
Dataset: MIND; Bing News
10.A Semi-Personalized System for User Cold Start Recommendation on Music Streaming Apps
Author(Institute): Léa Briand(Deezer)
KeyWords: Recommender Systems; User Cold Start; Music Streaming Service; Semi-Personalization; Heterogeneous Data; A/B Testing
Dataset: Deezer
11.Architecture and Operation Adaptive Network for Online Recommendations
Author(Institute): Lang Lang
KeyWords: Online Recommendations
12.SEMI: A Sequential Multi-Modal Information Transfer Network for E-Commerce Micro-Video Recommendations
Author(Institute): Chenyi Lei
KeyWords: E-Commerce Micro-Video Recommendation; Information Transfer
Dataset: Taobao
13.Curriculum Meta-Learning for Next POI Recommendation
Author(Institute): Miao Fan
KeyWords: POI
Dataset: Baidu Map
14.Learning to Embed Categorical Features without Embedding Tables for Recommendation
Author(Institute): Wang-Cheng Kang
KeyWords: Embed Categorical Features
Dataset: Movielens20M; Amazon Book
15.Preference Amplification in Recommender Systems
Author(Institute): Smriti Bhagat
KeyWords: Recommender systems; echo chambers; filter bubbles; fixed point
Dataset: MovieLens 10M; Yahoo
16.Data Poisoning Attack against Recommender System Using Incomplete and Perturbed Data
Author(Institute): Yaliang Li
KeyWords: Attack
17.Initialization Matters: Regularizing Manifold-informed Initialization for Neural Recommendation Systems
Author(Institute): Chunyan Miao
KeyWords: network initialization; recommender systems; manifold learning
Dataset: ML-1M; Steam; Anime
18.We Know What You Want: An Advertising Strategy Recommender System for Online Advertising
Author(Institute): Junqi Jin
KeyWords: E-commerce; Display Advertisement; Advertising Strategy Recommendation
Dataset: online
19.A Unified Solution to Constrained Bidding in Online Display Advertising
Author(Institute): Yue He
KeyWords: advertising
Dataset: Taobao
20.Clustering for Private Interest-based Advertising
Author(Institute): Alessandro Epasto
KeyWords: Interest-based advertising; clustering; anonymity; privacy
Dataset: Million Song; MovieLens
21.Diversity driven Query Rewriting in Search Advertising
Author(Institute): Nikit Begwani
KeyWords: sponsored search; query rewriting; natural language generation
22.Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Author(Institute): Chao Du
KeyWords: click-through rate (CTR); exploration-exploitation trade-off; advertising system; Gaussian process
Dataset: Amazon
23.Neural Auction: End-to-End Learning of Auction Mechanisms for E-Commerce Advertising
Author(Institute): Xiangyu Liu
KeyWords: Learning-based Mechanism Design; Neural Auction; E-commerce Advertising
Dataset: Taobao
24.Reinforcing Pretrained Models for Generating Attractive Text Advertisements
Author(Institute): Xiting Wang
KeyWords: Advertisement Generation; Pretrained Language Models; Reinforcement Learning; Natural Language Generation
Dataset: Microsoft Bing
25.Efficient Collaborative Filtering via Data Augmentation and Step-size Optimization
Author(Institute): Xuejun Liao(SAS Institute Inc)
KeyWords: Collaborative Filtering; Data Augmentation
Dataset: MovieLens 1M
26.Efficient Data-specific Model Search for Collaborative Filtering
Author(Institute): Quanming Yao
KeyWords: Collaborative Filtering
Dataset: MovieLens-100K; MovieLens-1M; Yelp; Amazon-Book
27.ML-based Visualization Recommendation: Learning to Recommend Visualizations from Data
Author(Institute): Ryan A. Rossi
KeyWords: Visualization recommendation; learning-based visualization recommendation; data visualization; machine learning; deep learning
Dataset: http://Plot.ly
28.PURE: Positive-Unlabeled Recommendation with Generative Adversarial Network
Author(Institute): Jianpeng Xu
KeyWords: Recommender systems; Positive-unlabeled learning
Dataset: Movielens; Yelp
29.Table2Charts: Recommending Charts by Learning Shared Table Representations
Author(Institute): Mengyu Zhou
KeyWords: Table2seq; chart recommendation; deep Q-learning; copying mechanism; search sampling; transfer learning; table representations
Dataset: Movielens; Yelp
30.Automated Loss Function Search in Recommendations
Author(Institute): Chong Wang
KeyWords: AutoML; Recommender Systems; Loss Functions
Dataset: Criteo; ML-20m
31.Bootstrapping Recommendations at Chrome Web Store
Author(Institute): Zhen Qin
KeyWords: learning to rank; generalized additive models; text embedding
Dataset: CWS
32.Contrastive Learning for Debiased Candidate Generation in Large-Scale Recommender Systems
Author(Institute): Chang Zhou
KeyWords: candidate generation; bias reduction; inverse propensity weighting; contrastive learning; negative sampling
Dataset: ML-1M; Beauty; Steam
33.Device-Cloud Collaborative Learning for Recommendation
Author(Institute): Jiangchao Yao
KeyWords: On-device Intelligence; Cloud Computing
Dataset: Amazon; Movielens-1M; Taobao
34.FleetRec: Large-Scale Recommendation Inference on Hybrid GPU-FPGA Clusters
Author(Institute): Kai Zeng
KeyWords: scalable recommendation
35.Hierarchical Training: Scaling Deep Recommendation Models on Large CPU Clusters
Author(Institute): Jiangchao Yao( [公式] Facebook)
KeyWords: CPU Clusters
36.Leveraging Tripartite Interaction Information from Live Stream E-Commerce for Improving Product Recommendation
Author(Institute): Zhuoxuan Jiang; Dong-Dong Chen; Dongsheng Li
KeyWords: graph representation learning; multi-task learning; live streaming E-Commence; product recommendation
Dataset: LSEC-Small; LSECLarge
37.Sliding Spectrum Decomposition for Diversified Recommendation
Author(Institute): Yanhua Huang
KeyWords: Diversified Recommendation; Sliding Spectrum Decomposition; Item Embedding; Determinantal Point Process; CB2CF
38.Towards the D-Optimal Online Experiment Design for Recommender Selection
Author(Institute): Da Xu
KeyWords: Recommender Selection
Dataset: Walmart