- 改进YOLO系列 | YOLOv5/v7 引入 Dynamic Snake Convolution | 动态蛇形卷积
wei子
YOLO目标跟踪人工智能
改进YOLO系列:动态蛇形卷积(DynamicSnakeConvolution,DSC)简介YOLO系列目标检测算法以其速度和精度著称,但对于细长目标例如血管、道路等,其性能仍有提升空间。动态蛇形卷积(DSC)是YOLOv5/v7中引入的一种改进,旨在更好地处理细长目标。DSC原理DSC的核心思想是使用类似蛇形运动的卷积核来提取细长目标的特征。具体来说,DSC卷积核沿着一系列控制点移动,并根据每个
- 图像识别与应用
狂踹瘸子那条好脚
python
图像识别作为人工智能领域的重要分支,近年来取得了显著进展,其中卷积神经网络(CNN)功不可没。CNN凭借其强大的特征提取能力,在图像分类、目标检测、人脸识别等任务中表现出色,成为图像识别领域的核心技术。一、卷积神经网络:图像识别的利器CNN是一种专门处理网格状数据的深度学习模型,其结构设计灵感来源于生物视觉系统。与全连接神经网络不同,CNN通过卷积层、池化层等结构,能够有效提取图像的局部特征,并逐
- DeepSeek使用中的问题及解决方案(部分)
WeiLai1112
DeepSeek人工智能
1.模型部署与配置问题问题1:环境依赖冲突现象:安装模型依赖库时出现版本不兼容(如Python、PyTorch版本冲突)。解决方案:使用虚拟环境(如conda或venv)隔离依赖。严格按照官方文档的版本要求安装依赖,例如:condacreate-ndeepseekpython=3.9condaactivatedeepseekpipinstalltorch==2.0.1transformers==4
- yolov8人脸识别与脸部关键点检测(代码+原理)
QQ_1309399183
计算机视觉实战项目集锦YOLO人工智能人脸识别yolo人脸检测
YOLOv8脸部识别是一个基于YOLOv8算法的人脸检测项目,旨在实现快速、准确地检测图像和视频中的人脸。该项目是对YOLOv8算法的扩展和优化,专门用于人脸检测任务。YOLOv8是一种基于深度学习的目标检测算法,通过将目标检测问题转化为一个回归问题,可以实现实时的目标检测。YOLOv8Face项目在YOLOv8的基础上进行了改进,使其更加适用于人脸检测。以下是YOLOv8Face项目的一些特点和
- TensorFlow LiteRT 概览
姚家湾
tensorflow人工智能python
LiteRT(简称LiteRuntime,以前称为TensorFlowLite)是Google面向设备端AI的高性能运行时。您可以找到适用于各种机器学习/AI任务的LiteRT就绪模型,也可以使用AIEdge转换和优化工具将TensorFlow、PyTorch和JAX模型转换为TFLite格式并运行。主要特性针对设备端机器学习进行了优化:LiteRT解决了五项关键的ODML约束条件:延迟时间(无需
- 机器学习(1)安装Pytorch
CoderIsArt
机器学习与深度学习机器学习pytorch人工智能
1.安装命令pip3installtorchtorchvisiontorchaudio--index-urlhttps://download.pytorch.org/whl/cu1182.安装过程Log:Lookinginindexes:https://download.pytorch.org/whl/cu118CollectingtorchDownloadinghttps://download.
- Pytorch实现之利用特征分布的差异来指导GAN的训练
这张生成的图像能检测吗
优质GAN模型训练自己的数据集GAN系列pytorch生成对抗网络人工智能神经网络深度学习计算机视觉机器学习
简介简介:FIDGAN通过将FID损失引入GAN的训练过程,显著提升了生成图像的质量。其核心思想是利用特征分布的差异来指导生成器的训练,同时通过使用轻量级的MobileNet-v3提高了计算效率。这种方法在图像生成任务中具有广泛的应用前景。论文题目:FIDGAN:AGenerativeAdversarialNetworkwithAnInceptionDistance(FIDGAN:具有初始距离的生
- Pytorch实现论文之利用多生成器来预防模式崩溃
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集人工智能python生成对抗网络机器学习pytorch深度学习计算机视觉
简介简介:一般来说,生成器相比判别器要完成的任务更加困难,前者需要完成数据概率密度的拟合,而后者只需要判别真伪,影响GAN性能的一个问题就是模式奔溃。而采用多生成器可以缓解这个问题。论文中主要设计了多生成器的架构和一个对于鉴别器的新损失设计来缓解这个问题。模型结构采用DCGAN的框架,原始损失基于WGAN-GP的设计理念。论文题目:StudyofPreventionofModeCollapsein
- 【深度学习pytorch-93】Transformer 相比 RNN 的优势
华东算法王
DL-pytorch深度学习pytorchtransformer
Transformer相比RNN的优势Transformer和RNN(循环神经网络)都是自然语言处理(NLP)领域的重要架构,但它们的工作原理和应用方式有很大不同。Transformer由于其独特的结构和机制,在多个方面优于RNN。以下是Transformer相比RNN的主要优势:1.并行计算能力RNN的局限性RNN是按顺序处理输入的,即每个时间步的输出都依赖于前一个时间步的输出。这意味着,在训练
- python 解决PyCharm里plugins搜索不到插件
weixin_43250628
python学习日记计算机pycharmidepython
pycharmplugins搜索不到插件解决方案:在图示位置填入url:https://plugins.jetbrains.com/后应用即可
- 模型保存、训练与验证
钰见梵星
小土堆PyTorch深度学习深度学习人工智能
模型保存、训练与验证网络模型的保存与读取在PyTorch中,模型的保存与加载有两种主要方式:保存&加载完整模型(包括网络结构和参数)只保存&加载模型参数(推荐方式)可以直接跳过看最后几行。PyTorch提供torch.save()方法来保存模型,可以选择保存整个模型结构或只保存参数。保存整个模型importtorchfromtorchvisionimportmodels#加载VGG16模型(未使用
- python中的深度学习框架TensorFlow 和 PyTorch 有什么区别?
大懒猫软件
python深度学习tensorflowpytorch
TensorFlow和PyTorch是目前最流行的两个深度学习框架,它们在设计理念、使用方式和社区支持等方面存在一些显著的区别。以下是它们的主要区别:1.设计理念TensorFlow:静态计算图:TensorFlow使用静态计算图,即在运行模型之前需要先定义整个计算图。这使得TensorFlow在大规模分布式训练和部署时具有优势,但调试和动态修改模型时可能不够灵活。功能全面:TensorFlow提
- python实现将RGB相机与事件相机的照片信息进行融合以进行目标检测
go5463158465
python算法python数码相机目标检测
要将RGB相机与事件相机的照片信息进行融合以进行目标检测,我们可以按以下步骤进行:整体思路数据读取:分别读取RGB图像和事件相机数据。数据预处理:对RGB图像和事件数据进行必要的预处理,如调整尺寸、归一化等。数据融合:将预处理后的RGB图像和事件数据进行融合。目标检测:使用融合后的数据进行目标检测。代码实现importcv2importnumpyasnpimporttorchfromtorchvi
- PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
木觞清
pytorchtensorflow人工智能
在机器学习和深度学习领域,PyTorch和TensorFlow是最流行的两个框架。它们各有特点,适用于不同的开发需求和场景。本文将详细对比这两个框架,帮助你根据项目需求选择最合适的工具。一、概述PyTorch和TensorFlow都是深度学习框架,它们为构建、训练和部署神经网络提供了强大的工具。尽管它们的最终目标相同,但其设计哲学和实现方式有所不同。PyTorch:由Facebook的人工智能研究
- PyTorch使用教程(10)-torchinfo.summary网络结构可视化详细说明
深图智能
深度学习教程深度学习pythonpytorch人工智能
1、基本介绍torchinfo是一个为PyTorch用户量身定做的开源工具,其核心功能之一是summary函数。这个函数旨在简化模型的开发与调试流程,让模型架构一目了然。通过torchinfo的summary函数,用户可以快速获取模型的详细结构和统计信息,如模型的层次结构、输入/输出维度、参数数量、多加操作(Mult-Adds)等关键信息。2、安装首先,你需要安装torchinfo库。可以通过pi
- 详解多模态(红外-可见光图像)目标检测模型SuperYOLO源码,真正搞清代码逻辑!
弗兰随风小欢
目标检测实验系列深度学习目标检测YOLO计算机视觉多模态目标检测视觉检测人工智能
目录1.文章主要内容2.相关说明3.基于SuperYOLO的多模态目标检测3.1详解代码流程(重点)3.1.1train.py文件(入口)3.1.2SRyolo.py文件3.1.3datasets.py文件3.1.4再次回到train.py文件3.1.5再次回到SRyolo.py文件3.总结1.文章主要内容本文主要是详细分析SuperYOLO多模态源代码,包括如何启动,以及详细代码部分如何改进,从
- 【深度学习】计算机视觉(CV)-目标检测-DETR(DEtection TRansformer)—— 基于 Transformer 的端到端目标检测
IT古董
深度学习人工智能深度学习计算机视觉目标检测
1.什么是DETR?DETR(DEtectionTRansformer)是FacebookAI(FAIR)于2020年提出的端到端目标检测算法,它基于Transformer架构,消除了FasterR-CNN、YOLO等方法中的候选框(AnchorBoxes)和非极大值抑制(NMS)机制,使目标检测变得更简单、高效。论文:End-to-EndObjectDetectionwithTransforme
- 遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
岁月如歌,青春不败
生态遥感目标检测cnntransformer遥感遥感影像
我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。一:深度卷积网络知识1.深度学习在遥感图像识别中的范式和问题2.深度学习的历史发展历程3.机器学习,深度学习等任务的基本处理流程4.卷积神经网络的基本原理5
- 服务器与环境配置——Ubuntu22.04杂记
Osiria
服务器pythonubuntu
服务器与环境配置——Ubuntu22.04杂记系统配置apt/apt-getProxy配置修改主机名用户权限文件复制一些容易出错的python库安装Pytorch3D(0.7.5)psbody-mesh4.0([link](https://github.com/MPI-IS/mesh))其它系统配置apt/apt-getProxy配置sudonano/etc/apt/apt.conf.d/prox
- anaconda,Python,cuda,pytorch 下载安装
三希
pythonpytorch开发语言
以下是Anaconda、Python、CUDA和PyTorch的下载安装步骤:一、Anaconda下载访问Anaconda官方网站:DownloadAnacondaDistribution|Anaconda。根据您的操作系统(Windows、macOS或Linux)选择合适的版本进行下载。例如,对于Windows系统,选择对应的.exe安装文件。安装Windows:双击下载的.exe文件。按照安装
- pycharm的学习过程和学习感悟
难得改名字
pycharm学习ide
我在编程的世界里,选择一款合适的集成开发环境对于提高编码效率和代码质量至关重要。对我而言,PyCharm就是这样一款不可或缺的编程利器。从初次接触茫然无措到现在能够大致了解,这段学习旅程充满了挑战与收获。学习Pycharm的过程,恰似攀爬一座巍峨的山峰,虽充满挑战,但每一步都有独特的风景。起初,面对Pycharm那略显复杂的界面,我感到有些迷茫,众多的菜单和功能按钮让人眼花缭乱。然而,当我静下心来
- 用deepseek学大模型08-长短时记忆网络 (LSTM)
wyg_031113
lstm人工智能rnn
deepseek.com从入门到精通长短时记忆网络(LSTM),着重介绍的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。从入门到精通长短时记忆网络(LSTM)参考:长短时记忆网络(LSTM)在序列数据处理中的优缺点分析1.LSTM核心机制LSTM通过门控机制(遗忘门、输入门、输出门)和细
- torch环境冲突:AttributeError: module ‘torch.library‘ has no attribute ‘register_fake‘
Ven%
深度学习速通系列深度学习基础动手Ubuntu深度学习机器学习pytorch
如果torch版本冲突问题复杂,可以尝试清理环境并重新安装所有依赖项:pipuninstalltorchtorchaudiotorchvisionpipinstalltorch==2.3.1torchaudio==2.3.1torchvision==0.18.1-fhttps://mirrors.tuna.tsinghua.edu.cn/pytorch-wheels/torch_stable.ht
- Bug处理之执行自己编写代码中出现的AttributeError: ‘XXX’ object has no attribute’xxx’
NormanG
量化编程基础
操作系统Windows10.0;PythonIDE:Pycharm2018.02Python版本:python3.6(anaconda平台)自己编写脚本搭建股票数据库问题描述:自己编写python脚本解决一些数据库搭建过程中的繁琐过程,方便以后重复调用;编写的类在导入应用时报错AttributeError:‘XXX’objecthasnoattribute’xxx’,之前未出现过,因为是重新修改代
- Pytorch实现之粒子群优化算法在GAN中的应用
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络pytorch算法深度学习计算机视觉
简介简介:主要是采用了粒子群优化(PSO)算法来优化GAN的一个训练。PSO是一种是一种基于种群的随机优化技术。这种优化技术是通过粒子群进行的,粒子群在每次迭代中都会更新自己。对于给定的目标函数,这种方法利用一个搜索空间,在那里粒子群移动,找到所需的全局最小值。这些粒子与它们当前的环境局部相互作用,也与彼此相互作用,具有可接受的随机性质。通过合并粒子的当前速度,探索粒子的历史和粒子的邻居,可以知道
- 用deepseek学大模型08-卷积神经网络(CNN)
wyg_031113
机器学习人工智能
yuanbao.tencent.com从入门到精通卷积神经网络(CNN),着重介绍的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。一、目标函数与损失函数数学推导1.均方误差(MSE)标量形式:E(w)=12∑i=1N(yi−y^i)2E(\mathbf{w})=\f
- Pytorch实现论文之一种基于扰动卷积层和梯度归一化的生成对抗网络
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集pytorch人工智能机器学习生成对抗网络神经网络计算机视觉深度学习
简介简介:提出了一种针对鉴别器的梯度惩罚方法和在鉴别器中采用扰动卷积,拟解决锐梯度空间引起的训练不稳定性问题和判别器的记忆问题。论文题目:APerturbedConvolutionalLayerandGradientNormalizationbasedGenerativeAdversarialNetwork(一种基于扰动卷积层和梯度归一化的生成对抗网络)会议:20244thInternationa
- Pytorch实现之在LSGAN中结合重建损失
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集pytorch人工智能python
简介简介:这篇论文在LSGAN的基础上结合了重建损失来产生通过传统不良数据检测(BDD)机制的人工测量。这篇博客的主要内容是关于实现了重建损失与LSGAN的结合。论文题目:FalseDataInjectionAttacksBasedonLeastSquaresGenerativeAdversarialNetworkswithReconstructionLoss(基于重构损失最小二乘生成对抗网络的虚
- Pytorch实现论文:利用推土机距离与梯度惩罚在ACGAN中训练。
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorch人工智能深度学习gan机器学习生成对抗网络
论文简介论文:ACWGAN-GPformillingtoolbreakagemonitoringwithimbalanceddata(ACWGAN-GP用于铣削工具断裂监视的数据不平衡数据)出处:RoboticsandComputer-IntegratedManufacturing论文摘要:铣削操作过程中的刀具破损监测(TBM)对于确保工件质量和最大限度减少经济损失至关重要。在训练数据充足、分布均
- Pytorch实现论文之三元DCGAN生成RGB图像用于红外图像着色生成
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集人工智能python生成对抗网络深度学习pytorch机器学习计算机视觉
简介简介:采用了三次DCGAN单独生成单通道图像之后进行组成RGB图像放入鉴别器中检测,并在鉴别器和生成器的损失训练中采用梯度方法来提升或者降低权重。该方法将用于获得红外图像着色的生成。论文题目:InfraredImageColorizationbasedonaTripletDCGANArchitecture(基于三元DCGAN架构的红外图像着色)会议:2017IEEEConferenceonCo
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc